cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052992 Expansion of 1/((1 - x)*(1 - 2*x)*(1 + 2*x)).

Original entry on oeis.org

1, 1, 5, 5, 21, 21, 85, 85, 341, 341, 1365, 1365, 5461, 5461, 21845, 21845, 87381, 87381, 349525, 349525, 1398101, 1398101, 5592405, 5592405, 22369621, 22369621, 89478485, 89478485, 357913941, 357913941, 1431655765, 1431655765, 5726623061, 5726623061
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the sum of square divisors of 2^n. - Paul Barry, Oct 13 2005
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016

Crossrefs

Programs

  • GAP
    Flat(List([1..17],n->[(4^n-1)/3,(4^n-1)/3])); # Muniru A Asiru, Oct 21 2018
    
  • Magma
    [&+[2^k*(1 + (-1)^k)/2: k in [0..n]]: n in [0..50]]; // Vincenzo Librandi, Oct 21 2018
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Union(Z,Z),Union(Z,Z))),Sequence(Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-2x)(1+2x)),{x,0,40}],x] (* or *) LinearRecurrence[{1,4,-4},{1,1,5},40] (* or *) With[{c= LinearRecurrence[ {5,-4},{1,5},20]},Riffle[c,c]] (* Harvey P. Dale, Sep 12 2015 *)
    (4^(1 + Floor[(Range@40-1)/2])-1)/3 (* Federico Provvedi, Oct 19 2018 *)
  • Python
    for n in range(0,40): print((int(4**(1+int((n+2)/2)-1)/3)), end=', ') # Stefano Spezia, Oct 19 2018
    
  • Python
    [4**(1+(n+2)//2-1)//3 for n in range(40)] # Pascal Bisson, Feb 03 2022
    

Formula

G.f.: 1/(-1+4*x^2)/(-1+x).
Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 1 + a(n+2) = 0}.
a(n) = -1/3 + Sum((1/6)*(1+4*_alpha)*_alpha^(-1-n), where _alpha=RootOf(-1+4*_Z^2))
a(n) = Sum_{k=0..n} 2^k(1+(-1)^k)/2. - Paul Barry, Nov 24 2003
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3). - Paul Curtz, Apr 27 2011
a(n) = (4^(1 + floor(n/2)) - 1)/3. - Federico Provvedi, Oct 19 2018
a(n)-a(n-1) = A199572(n). - R. J. Mathar, Feb 27 2019
a(n) = A263053(n)/2. - Pascal Bisson, Feb 03 2022

Extensions

More terms from James Sellers, Jun 08 2000