cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053152 Number of 2-element intersecting families whose union is an n-element set.

Original entry on oeis.org

0, 2, 9, 32, 105, 332, 1029, 3152, 9585, 29012, 87549, 263672, 793065, 2383292, 7158069, 21490592, 64504545, 193579172, 580868589, 1742867912, 5229128025, 15688432652, 47067395109, 141206379632, 423627527505, 1270899359732, 3812731633629, 11438262009752
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Feb 28 2000

Keywords

Crossrefs

Cf. A036239, A064686 (first differences).

Programs

  • Magma
    [Floor((3^n-2^n)/2): n in [1..30]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    A053152:=n->floor((3^n-2^n)/2): seq(A053152(n), n=1..30); # Wesley Ivan Hurt, Mar 19 2015
  • Mathematica
    CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
    LinearRecurrence[{6,-11,6}, {0,2,9}, 50] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    for(n=1,50, print1((1/2)*(3^n -2^n -1), ", ")) \\ G. C. Greubel, Oct 06 2017
  • Sage
    [(3^n - 1)/2-2^(n-1) for n in range(1,27)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2!)*(3^n-2^n-1).
From Colin Barker, Jun 26 2012: (Start)
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3).
G.f.: x^2*(2-3*x)/((1-x)*(1-2*x)*(1-3*x)). (End)
a(n) = floor((3^n-2^n)/2). - Wesley Ivan Hurt, Mar 16 2015

Extensions

More terms from James Sellers, Mar 01 2000
a(27)-a(28) from Vincenzo Librandi, Mar 17 2015