cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053220 a(n) = (3*n-1) * 2^(n-2).

Original entry on oeis.org

1, 5, 16, 44, 112, 272, 640, 1472, 3328, 7424, 16384, 35840, 77824, 167936, 360448, 770048, 1638400, 3473408, 7340032, 15466496, 32505856, 68157440, 142606336, 297795584, 620756992, 1291845632, 2684354560, 5570035712, 11542724608, 23890755584, 49392123904
Offset: 1

Views

Author

Asher Auel, Jan 01 2000

Keywords

Comments

Coefficients in the hypergeometric series identity 1 - 5*x/(x + 4) + 16*x*(x - 1)/((x + 4)*(x + 6)) - 44*x*(x - 1)*(x - 2)/((x + 4)*(x + 6)*(x + 8)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A276289. - Peter Bala, May 30 2019
For n>=2, a(n) is the total number of ones in runs of ones of length >=5 over all binary strings of length n+3. - Félix Balado, Aug 06 2025

Crossrefs

Center elements from triangle A053218. Also a diagonal of triangle A056242.

Programs

  • Haskell
    a053220 n = a056242 (n + 1) n  -- Reinhard Zumkeller, May 08 2014
  • Magma
    [(3*n-1)*2^(n-2): n in [1..50]]; // Vincenzo Librandi, May 09 2011
    
  • Mathematica
    ListCorrelate[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* or *) ListConvolve[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* Ross La Haye, Feb 24 2007 *)
    LinearRecurrence[{4, -4}, {1, 5}, 35] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    Array[(3# - 1) 2^(# - 2) &, 35] (* Alonso del Arte, Sep 04 2018 *)
    CoefficientList[Series[(1 + x)/(1 - 2 * x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    a(n)=if(n<1,0,(3*n-1)*2^(n-2))
    
  • PARI
    a(n)=(3*n-1)<<(n-2) \\ Charles R Greathouse IV, Apr 17 2012
    

Formula

G.f.: x*(1+x)/(1-2*x)^2.
a(n) = (3*n-1) * 2^(n-2).
E.g.f.: exp(2*x)*(1+3*x). The sequence 0, 1, 5, 16, ... has a(n) = ((3n-1)*2^n + 0^n)/4 (offset 0). It is the binomial transform of A032766. The sequence 1, 5, 16, ... has a(n) = (2+3n)*2^(n-1) (offset 0). It is the binomial transform of A016777. - Paul Barry, Jul 23 2003
Row sums of A132776(n-1). - Gary W. Adamson, Aug 29 2007