A053408
Numbers k such that A003266(k) + 1 is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 22, 28
Offset: 1
-
Select[Range[30], PrimeQ[Fibonorial[#] + 1] &] (* Robert Price, May 26 2019 *)
-
ff(n)=prod(i=1, n, fibonacci(i));
for(n=1,10^6, if(ispseudoprime(ff(n)+1), print1(n,", "))); \\ Joerg Arndt, Aug 16 2014
A052449
a(n) = 1 + Product_{k=1..n} Fibonacci(k).
Original entry on oeis.org
2, 2, 3, 7, 31, 241, 3121, 65521, 2227681, 122522401, 10904493601, 1570247078401, 365867569267201, 137932073613734401, 84138564904377984001, 83044763560621070208001, 132622487406311849122176001, 342696507457909818131702784001
Offset: 1
-
List([1..20], n-> 1+Product([1..n], j-> Fibonacci(j)) ); # G. C. Greubel, Sep 26 2019
-
[1+(&*[Fibonacci(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Sep 26 2019
-
seq(1+mul(combinat:-fibonacci(j),j=1..n), n=1..30); # Robert Israel, Jun 10 2015
-
1 + Table[Times @@ Fibonacci[Range[n]], {n, 20}] (* T. D. Noe, Dec 29 2012 *)
FoldList[Times,Fibonacci[Range[20]]]+1 (* Harvey P. Dale, Feb 28 2023 *)
-
vector(20, n, 1+prod(j=1,n, fibonacci(j))) \\ G. C. Greubel, Sep 26 2019
-
[1+product(fibonacci(j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 26 2019
A103815
a(n) = -1 + Product_{k=1..n} Fibonacci(k).
Original entry on oeis.org
0, 0, 1, 5, 29, 239, 3119, 65519, 2227679, 122522399, 10904493599, 1570247078399, 365867569267199, 137932073613734399, 84138564904377983999, 83044763560621070207999, 132622487406311849122175999, 342696507457909818131702783999, 1432814097681520949608649339903999
Offset: 1
a(15) = 1 * 1 * 2 * 3 * 5 * 8 * 13 * 21 * 34 * 55 * 89 * 144 * 233 * 377 * 610 - 1 = 84138564904377983999 is prime.
-
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> -1 + mul(F(i), i=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 09 2018
-
FoldList[Times,Fibonacci[Range[20]]]-1 (* Harvey P. Dale, Aug 29 2021 *)
Showing 1-3 of 3 results.
Comments