A053430 a(n) = (6^(n+1) - (-5)^(n+1))/11.
1, 1, 31, 61, 991, 2821, 32551, 117181, 1093711, 4609141, 37420471, 175694701, 1298308831, 6569149861, 45518414791, 242592910621, 1608145354351, 8885932672981, 57130293303511, 323708273492941, 2037617072598271
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
- Index entries for linear recurrences with constant coefficients, signature (1,30).
Programs
-
Magma
[(6^(n+1)-(-5)^(n+1))/11: n in [0..30]]; // Vincenzo Librandi, Mar 11 2014
-
Maple
A053430:=n->( 6^(n+1)-(-5)^(n+1) )/11; seq(A053430(n), n=0..20); # Wesley Ivan Hurt, Mar 11 2014
-
Mathematica
Join[{a=1,b=1},Table[c=b+30*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *) Table[(6^(n+1)-(-5)^(n+1))/11,{n,0,20}] (* Harvey P. Dale, May 09 2012 *) LinearRecurrence[{1,30},{1,1},21] (* Harvey P. Dale, May 09 2012 *) CoefficientList[Series[-1/(5 x + 1)/(6 x - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 11 2014 *)
-
PARI
a(n) = ( 6^(n+1)-(-5)^(n+1) )/11; \\ Joerg Arndt, Mar 10 2014
Formula
G.f.: -1/(5*x+1)/(6*x-1). - R. J. Mathar, Nov 16 2007
a(0)=1, a(1)=1, a(n) = a(n-1) + 30*a(n-2). - Harvey P. Dale, May 09 2012
Extensions
More terms from James Sellers, Feb 02 2000
Comments