A053445 Second differences of partition numbers A000041.
1, 0, 1, 0, 2, 0, 3, 1, 4, 2, 7, 3, 10, 7, 14, 11, 22, 17, 32, 28, 45, 43, 67, 63, 95, 96, 134, 139, 192, 199, 269, 287, 373, 406, 521, 566, 718, 792, 983, 1092, 1346, 1496, 1827, 2045, 2465, 2772, 3323, 3733, 4449, 5016, 5929, 6696, 7882, 8897, 10426
Offset: 0
Examples
a(8) = 7 - 4 = 3; the corresponding partitions are 44, 332 and 2222.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, 3.
Links
- Andrew van den Hoeven, Table of n, a(n) for n = 0..9998 (terms up to a(1000) from T. D. Noe)
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- K. Banerjee, Positivity of the second shifted difference of partitions and overpartitions: a combinatorial approach, Enum. Combin. Applic. 3 (2023) # S2R12
- P. Furlan, G. M. Sotkov and I. T. Todorov, Two-Dimensional Conformal Quantum Field Theory, Rivista d. Nuovo Cimento 12, 6 (1989) 1-202.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
Programs
-
Magma
m:=58; S:=[ NumberOfPartitions(n): n in [0..m] ]; [ S[n+2]-2*S[n+1]+S[n]: n in [1..m-2] ]; // Klaus Brockhaus, Jun 09 2009
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(n$2) -2*b(n+1$2) +b(n+2$2): seq(a(n), n=0..80); # Alois P. Heinz, May 19 2014 # alternative Maple program: P:= [seq(combinat:-numbpart(n),n=0..1002)]: seq(P[i]-2*P[i+1]+P[i+2],i=1..1001); # Robert Israel, Dec 15 2014
-
Mathematica
Table[(PartitionsP[n+2]-PartitionsP[n+1])-(PartitionsP[n+1]-PartitionsP[n]),{n,0,42}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *) Differences[Table[ PartitionsP[n], {n, 0, 56}], 2] (* Jean-François Alcover, Sep 07 2011 *) Differences[PartitionsP[Range[0,60]],2] (* Harvey P. Dale, Jan 29 2016 *)
-
PARI
lista(nn) = {v = vector(nn, n, numbpart(n-1)); dv = vector(#v-1, n, v[n+1] - v[n]); vector(#dv-1, n, dv[n+1] - dv[n]);} \\ Michel Marcus, Dec 15 2014
-
Python
from sympy import npartitions def A053445(n): return npartitions(n+2)-(npartitions(n+1)<<1)+npartitions(n) # Chai Wah Wu, Mar 30 2023
Formula
a(n) ~ exp(sqrt(2*n/3)*Pi)*Pi^2/(24*sqrt(3)*n^2) * (1 + (23*Pi/(24*sqrt(6)) - 3*sqrt(6)/Pi)/sqrt(n) + (625*Pi^2/6912 + 45/(2*Pi^2) - 115/24)/n). - Vaclav Kotesovec, Nov 04 2016
G.f.: 1/x - 1/x^2 + ((1 - x)/x^2)*Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Feb 28 2017
Extensions
More terms from James Sellers, Feb 02 2000
Start of sequence changed, Apr 25 2003
Comments