cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053445 Second differences of partition numbers A000041.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 4, 2, 7, 3, 10, 7, 14, 11, 22, 17, 32, 28, 45, 43, 67, 63, 95, 96, 134, 139, 192, 199, 269, 287, 373, 406, 521, 566, 718, 792, 983, 1092, 1346, 1496, 1827, 2045, 2465, 2772, 3323, 3733, 4449, 5016, 5929, 6696, 7882, 8897, 10426
Offset: 0

Views

Author

Alford Arnold, Jan 12 2000

Keywords

Comments

First differences of 0 1 1 2 2 4 4 7 8 12 14 21 24 34 41 55 ... (A002865).
For n > 2, a(n-2) is the number of partitions of n with all parts > 1 and with the largest part occurring more than once. The list of partitions counted begins 22 (so a(2) = 1); 33, 222 (so a(4) = 2); 44, 332, 2222 (so a(6) = 3); 333; 55, 442, 3322, 22222; 443, 3332; 66, 552, 444, 4422, 3333, 33222, 222222; 553, 4432, 33322; ...
a(n) is the number of certain level-n quasi-primary states of a quotient space of certain Verma modules. See the Furlan et al. reference p. 67. - Wolfdieter Lang, Apr 25 2003

Examples

			a(8) = 7 - 4 = 3; the corresponding partitions are 44, 332 and 2222.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, 3.

Crossrefs

Programs

  • Magma
    m:=58; S:=[ NumberOfPartitions(n): n in [0..m] ]; [ S[n+2]-2*S[n+1]+S[n]: n in [1..m-2] ]; // Klaus Brockhaus, Jun 09 2009
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n$2) -2*b(n+1$2) +b(n+2$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 19 2014
    # alternative Maple program:
    P:= [seq(combinat:-numbpart(n),n=0..1002)]:
    seq(P[i]-2*P[i+1]+P[i+2],i=1..1001); # Robert Israel, Dec 15 2014
  • Mathematica
    Table[(PartitionsP[n+2]-PartitionsP[n+1])-(PartitionsP[n+1]-PartitionsP[n]),{n,0,42}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Differences[Table[ PartitionsP[n], {n, 0, 56}], 2] (* Jean-François Alcover, Sep 07 2011 *)
    Differences[PartitionsP[Range[0,60]],2] (* Harvey P. Dale, Jan 29 2016 *)
  • PARI
    lista(nn) = {v = vector(nn, n, numbpart(n-1)); dv = vector(#v-1, n, v[n+1] - v[n]); vector(#dv-1, n, dv[n+1] - dv[n]);} \\ Michel Marcus, Dec 15 2014
    
  • Python
    from sympy import npartitions
    def A053445(n): return npartitions(n+2)-(npartitions(n+1)<<1)+npartitions(n) # Chai Wah Wu, Mar 30 2023

Formula

a(n) = A002865(n+2) - A002865(n+1).
a(n) ~ exp(sqrt(2*n/3)*Pi)*Pi^2/(24*sqrt(3)*n^2) * (1 + (23*Pi/(24*sqrt(6)) - 3*sqrt(6)/Pi)/sqrt(n) + (625*Pi^2/6912 + 45/(2*Pi^2) - 115/24)/n). - Vaclav Kotesovec, Nov 04 2016
G.f.: 1/x - 1/x^2 + ((1 - x)/x^2)*Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Feb 28 2017

Extensions

More terms from James Sellers, Feb 02 2000
Start of sequence changed, Apr 25 2003