cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A293445 A multiplicative encoding (base-2 compressed) for the exponents of 3 obtained when using Shevelev's algorithm for computing A053446.

Original entry on oeis.org

2, 2, 3, 12, 36, 3, 12, 24, 6, 48, 12, 20736, 82944, 12, 18, 864, 248832, 6, 20, 19906560, 59719680, 80, 8640, 720, 25920, 34560, 5, 80, 103195607040, 240, 480, 622080, 137594142720, 138240, 20, 59440669655040, 138240, 20, 14929920, 29859840, 240, 59719680, 8640, 720, 414720, 8640, 540, 447897600, 960, 46080, 34560, 59719680, 295814814232058265600, 5, 80
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			A001651(5) = 7 as 7 is the fifth number not divisible by 3. According to the algorithm described in the comment of A053446 we have in the form of a "finite continued fraction"
    1 + 14
    ------ + 7
       3^1
    ---------- + 14
          3^1
    ----------------- + 7
            3^2
    ---------------------- = 1
               3^2
Cumulatively multiplying (with A019565) together the prime-numbers corresponding to 1-bits in the binary expansions of the exponents of 3 in the denominators (that are 1, 1, 2, 2, in binary 1, 1, 10, 10, with 1's in bit-positions 0 and 1), yields prime(0+1) * prime(0+1) * prime(1+1) * prime(1+1) = 2^2 * 3^2 = 36, thus a(5) = 36.
(Adapted from _Vladimir Shevelev_'s explanation in A053446.)
Another example: A001651(19) = 28 as 28 is the 19th number not divisible by 3. (1 + 28) is not a multiple of 3, so we start with (1 + 2*28) = 1+56 = 57 and proceed as:
    1 + 56
    ------ + 56                     [that is, (57/3) + 56 = 75]
       3^1
    ---------- + 56                 [that is, (75/3) + 56 = 81]
          3^1
    -----------------  = 1          [that is, (81/81) = 1]
            3^4
So we obtained exponents 1, 1, 4 (in binary "1", "1" and "100") where the 1-bits are in positions 0, 0 and 2. We form a product prime(0+1) * prime(0+1) * prime(2+1) = 2*2*5, thus a(19) = 20.
		

Crossrefs

Cf. A293446 (restricted growth transform of this sequence).
Cf. also A292265.

Programs

  • Scheme
    (define (A293445 n) (define (next_one k m) (if (zero? (modulo (+ k m) 3)) (+ k m) (+ k m m))) (let* ((u (A001651 n)) (x_init (next_one 1 u))) (let loop ((x x_init) (z (A019565 (A007949 x_init)))) (let ((r (A038502 x))) (if (= 1 r) z (let ((x_next (next_one r u))) (loop x_next (* z (A019565 (A007949 x_next))))))))))
    (define (A001651 n) (let ((x (- n 1))) (if (even? x) (+ 1 (* 3 (/ x 2))) (- (* 3 (/ (+ x 1) 2)) 1))))
    (define (A038500 n) (A000244 (A007949 n)))
    (define (A038502 n) (/ n (A038500 n)))

Formula

A048675(a(n)) = A053446(n).

A293446 Restricted growth sequence transform of A293445, related to Shevelev's algorithm for computing A053446.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 3, 5, 6, 7, 3, 8, 9, 3, 10, 11, 12, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21, 16, 22, 23, 24, 25, 26, 27, 13, 28, 27, 13, 29, 30, 23, 15, 17, 18, 31, 17, 32, 33, 34, 35, 20, 15, 36, 21, 16, 37, 17, 26, 23, 38, 13, 39, 40, 41, 42, 22, 27, 43, 44, 13, 28, 45, 46, 47, 18, 48, 49, 29, 50, 51, 52, 53, 54, 55, 56, 57, 34, 58, 35, 39, 59, 60, 61, 34
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Crossrefs

Cf. also A292266.

Formula

For all i, j: a(i) = a(j) => A053446(i) = A053446(j).

A293220 Sum of all partial fractions in the algorithm used for calculation of A053446(n).

Original entry on oeis.org

1, 1, 1, 7, 12, 1, 8, 10, 1, 30, 12, 91, 108, 8, 6, 44, 157, 1, 45, 271, 300, 73, 164, 91, 162, 234, 1, 125, 588, 122, 175, 225, 684, 368, 65, 919, 373, 45, 512, 443, 206, 630, 300, 196, 506, 213, 118, 550, 303, 510, 459, 679, 2028, 1, 208, 941, 286, 1218, 201, 2611, 62, 691, 751, 724, 1575, 1374, 540, 3367, 1004, 36
Offset: 1

Views

Author

Keywords

Comments

This sequence gives an additional insight (cf. A292270) into the algorithm for the calculation of A053446(m), where m=A001651(n). Let us estimate how many steps are required before (the first) 1 will appear. Note that all partial fractions (which are indeed, integers) are residues modulo A001651(n) not divisible by 3 from the interval [1, A001651(n)-1]. So, if there is no repetition, then the number of steps does not exceed n-1. Suppose then that there is a repetition before the appearance of 1. Then for a not divisible by 3 residue k from [1, A001651(n)-1], 3^m_1 == 3^m_2 == k (mod A001651(n)) such that m_2 > m_1. But then 3^(m_2-m_1) == 1 (mod A001651(n)). So, since m_2 - m_1 < m_2, it means that 1 should appear earlier than the repetition of k, which is a contradiction. So the number of steps <= n-1. For example, for n=12, A001651(12) = 17, we have exactly n-1 = 11 steps with all other not divisible by 3 residues <= 17 - 1 = 16 modulo 17 appearing before the final 1: 2, 4, 7, 8, 14, 16, 11, 5, 13, 10 , 1.

Crossrefs

Cf. A038754 (seems to give the positions of ones).

Formula

Let n = 12. According to the comment, a(12) = 2 + 4 + 7 + 8 + 14 + 16 + 11 + 5 + 13 + 10 + 1 = 91.

A165781 a(n) = (2^A002326(n)-1)/(2*n+1).

Original entry on oeis.org

1, 1, 3, 1, 7, 93, 315, 1, 15, 13797, 3, 89, 41943, 9709, 9256395, 1, 31, 117, 1857283155, 105, 25575, 381, 91, 178481, 42799, 5, 84973577874915, 19065, 4599, 4885260612740877, 18900352534538475, 1, 63, 1101298153654301589
Offset: 0

Views

Author

Ctibor O. Zizka, Sep 26 2009

Keywords

Comments

a(n) = 1 <=> n is in A000225 <=> n = 2^k - 1 with k = 0, 1, 2, ... - M. F. Hasler, Sep 20 2017

Crossrefs

Programs

  • Maple
    A002326 := proc(n) if n = 0 then 1 ; else numtheory[order](2,2*n+1) ; end if ; end proc:
    A165781 := proc(n) (2^A002326(n)-1)/(2*n+1) ; end proc:
    seq(A165781(n),n=0..60) ; # R. J. Mathar, Nov 16 2009
  • Mathematica
    a[n_] := (2^MultiplicativeOrder[2, 2n+1]-1)/(2n+1);
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2020 *)
  • PARI
    a(n)=(2^znorder(Mod(2,n=2*n+1))-1)/n \\ M. F. Hasler, Sep 20 2017

Extensions

Sign in definition and offset corrected by R. J. Mathar, Nov 16 2009

A212906 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1

Views

Author

Boris Putievskiy, May 29 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 3 mod m = n, with gcd(m,3) = 1, cf. A053446.

Examples

			Triangle T(n,k) begins:
1,   2;
4,   8;
13, 26;
5,  10,  16,  20, 40, 80;
11, 22, 121, 242;
7,  14,  28,  52, 56, 91, 104, 182, 364, 728;
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=2 of A212737.
Column k=1 gives: A218356.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(3^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jun 02 2012
  • Mathematica
    M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (3^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(3^d-1) = A059885(n).

A059907 a(n) = |{m : multiplicative order of n mod m = 2}|.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 6, 4, 6, 3, 12, 2, 10, 6, 8, 4, 13, 2, 18, 6, 10, 4, 16, 4, 12, 9, 12, 4, 26, 2, 20, 6, 8, 12, 20, 4, 15, 6, 16, 4, 32, 2, 24, 10, 10, 6, 20, 4, 26, 9, 18, 4, 26, 6, 32, 12, 12, 4, 28, 2, 20, 10, 12, 18, 25, 4, 24, 6, 26, 4, 52, 2, 18, 10, 12, 18, 26, 4, 40, 8, 14, 5, 28
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{3}| = 1, a(3) = |{4,8}| = 2, a(4) = |{5,15}| = 2, a(5) = |{3,6,8,12,24}| = 5, a(6) = |{7,35}| = 2, a(7) = |{4,8,12,16,24,48}| = 6,...
		

Crossrefs

Programs

  • Maple
    with(numtheory):f := n->tau(n^2-1)-tau(n-1):for n from 1 to 100 do printf(`%d,`,f(n)) od:
  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^2-1, n-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^2-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^2-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A212486 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 7 mod m = n, with gcd(m,7) = 1, cf. A053450.

Examples

			Triangle T(n,k) begins:
  1,  2,  3,  6;
  4,  8, 12, 16, 24,  48;
  9, 18, 19, 38, 57, 114, 171, 342;
  5, 10, 15, 20, 25,  30,  32,  40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=4 of A212737.
Column k=1 gives: A218358.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..7);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (7^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,3,6}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(7^d-1) = A059889(n).

A059911 a(n) = |{m : multiplicative order of n mod m = 6}|.

Original entry on oeis.org

0, 3, 10, 16, 37, 10, 42, 24, 58, 53, 164, 26, 68, 38, 32, 68, 169, 22, 222, 38, 42, 50, 328, 40, 180, 219, 108, 26, 334, 82, 460, 82, 92, 72, 220, 108, 449, 86, 128, 80, 192, 22, 336, 110, 222, 218, 540, 84, 778, 129, 150, 80, 270, 54, 328, 356, 132, 68, 348, 22
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{9,21,63}| = 3, a(3) = |{7,14,28,52,56,91,104,182,364,728}| = 10, a(4) = |{13,35,39,45,65,91,105,117,195,273,315,455,585,819,1365,4095}| = 16,...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[{1, -1, -1, 1} * DivisorSigma[0, n^{6, 3, 2, 1} - 1]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025*)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^6-1) - numdiv(n^3-1) - numdiv(n^2-1) + numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^6-1)-tau(n^3-1)-tau(n^2-1)+tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A050975 Haupt-exponents of 3 modulo integers relatively prime to 3.

Original entry on oeis.org

1, 2, 4, 6, 2, 4, 5, 3, 6, 4, 16, 18, 4, 5, 11, 20, 3, 6, 28, 30, 8, 16, 12, 18, 18, 4, 8, 42, 10, 11, 23, 42, 20, 6, 52, 20, 6, 28, 29, 10, 30, 16, 12, 22, 16, 12, 35, 12, 18, 18, 30, 78, 4, 8, 41, 16, 42, 10, 88, 6, 22, 23, 36, 48, 42, 20, 100, 34, 6, 52, 53, 27, 20, 12
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A001651 := proc(n)
            (3*(2*n-1)-(-1)^n)/4 ;
    end proc:
    A050975 := proc(n)
            local gcd3 ;
            gcd3 := A001651(n+1);
            numtheory[order](3,gcd3) ;
    end proc: # R. J. Mathar, Oct 21 2012

A059908 a(n) = |{m : multiplicative order of n mod m = 3}|.

Original entry on oeis.org

0, 1, 2, 4, 3, 2, 8, 2, 12, 5, 12, 2, 12, 2, 4, 20, 5, 6, 10, 2, 6, 14, 12, 2, 40, 9, 4, 6, 18, 10, 16, 6, 6, 8, 12, 12, 39, 2, 12, 8, 8, 6, 16, 6, 18, 26, 12, 6, 50, 3, 18, 8, 18, 2, 32, 12, 8, 20, 4, 6, 60, 2, 12, 26, 21, 4, 64, 10, 6, 8, 8, 6, 20, 14, 4, 12, 6, 4, 64, 2, 70, 7, 12, 6, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{7}| = 1, a(3) = |{13,26}| = 2, a(4) = |{7,9,21,63}| = 4, a(5) = |{31,62,124}| = 3, a(6) = |{43,215}| = 2, a(7) = |{9,18,19,38,57,114,171,342}| = 8,...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^3-1]-DivisorSigma[0,n-1],{n,90}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^3-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^3-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.
Showing 1-10 of 18 results. Next