A053556
Denominator of Sum_{k=0..n} (-1)^k/k!.
Original entry on oeis.org
1, 1, 2, 3, 8, 30, 144, 280, 5760, 45360, 44800, 3991680, 43545600, 172972800, 6706022400, 93405312000, 42268262400, 22230464256000, 376610217984000, 250298560512000, 11640679464960000, 196503623737344000, 17841281393295360000
Offset: 0
1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
- G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- Eric Weisstein's World of Mathematics, Subfactorial
-
[Denominator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..20]]; // G. C. Greubel, May 16 2019
-
Table[Denominator[Sum[(-1)^k/k!, {k, 0, n}]], {n, 0, 20}] (* Robert G. Wilson v, Oct 13 2005 *)
Table[ Denominator[1 - Subfactorial[n]/n!], {n, 0, 22}] (* Jean-François Alcover, Feb 11 2014 *)
Denominator[Accumulate[Table[(-1)^k/k!,{k,0,30}]]] (* Harvey P. Dale, Aug 22 2016 *)
-
for(n=0,50, print1(denominator(sum(k=0,n,(-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
-
from math import factorial
from fractions import Fraction
def A053556(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).denominator # Chai Wah Wu, Jul 31 2023
-
[denominator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..20)] # G. C. Greubel, May 16 2019
A053557
Numerator of Sum_{k=0..n} (-1)^k/k!.
Original entry on oeis.org
1, 0, 1, 1, 3, 11, 53, 103, 2119, 16687, 16481, 1468457, 16019531, 63633137, 2467007773, 34361893981, 15549624751, 8178130767479, 138547156531409, 92079694567171, 4282366656425369, 72289643288657479, 6563440628747948887, 39299278806015611311
Offset: 0
1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
- G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- Eric Weisstein's World of Mathematics, Continued Fraction Constants
- Eric Weisstein's World of Mathematics, Generalized Continued Fraction
- Eric Weisstein's World of Mathematics, Subfactorial
-
[Numerator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, May 16 2019
-
Numerator[CoefficientList[Series[Exp[-x]/(1-x), {x, 0, 30}], x]] (* Jean-François Alcover, Nov 18 2011 *)
Table[Numerator[Sum[(-1)^k/k!,{k,0,n}]],{n,0,30}] (* Harvey P. Dale, Dec 02 2011 *)
Join[{1, 0}, Numerator[RecurrenceTable[{a[n]==a[n-1]+a[n-2]/(n-2), a[1] ==0, a[2]==1}, a, {n,2,30}]]] (* Terry D. Grant, May 07 2017; corrected by G. C. Greubel, May 16 2019 *)
-
for(n=0, 30, print1(numerator(sum(k=0,n, (-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
-
from fractions import Fraction
from math import factorial
def A053557(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).numerator # Chai Wah Wu, Jul 31 2023
-
[numerator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..30)] # G. C. Greubel, May 16 2019
A053520
Denominators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).
Original entry on oeis.org
2, 8, 38, 74, 1522, 11986, 11838, 1054766, 11506538, 45706526, 1772006854, 24681524038, 11169012898, 5874202721042, 99515904921182, 66139171377658, 3075946152109262, 51924337160029042, 4714400135799462226
Offset: 0
Convergents are 1/2, 3/8, 15/38, 29/74, 597/1522, 4701/11986, ...
-
for j from 1 to 50 do printf(`%d,`,denom(cfrac([0,seq([i,i+1],i=1..j)]))); od:
-
a[n_] := ContinuedFractionK[k, k+1, {k, n+1}] // Denominator; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 21 2016 *)
A053519
Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
Original entry on oeis.org
1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0
Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, Crelle, 1832, pp. 1-22.
-
for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
-
num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)
Original entry on oeis.org
1, 4, 19, 48, 645, 5346, 9989, 423680, 4936673, 22863284, 717864203, 10398234146, 14778845999, 2318706892436, 41349958502663, 67290481692176, 1273710986008283, 21639017114636720, 1870679510063123381
Offset: 0
a(16) = 1 + 3 + 15 + 29 + 597 + 4701 + 4643 + 413691 + 4512993 + 17926611 + 695000919 + 9680369943 + 4380611853 + 2303928046437 + 39031251610227 + 25940523189513 + 1206420504316107 = 1273710986008283 is prime.
Showing 1-5 of 5 results.
Comments