cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053556 Denominator of Sum_{k=0..n} (-1)^k/k!.

Original entry on oeis.org

1, 1, 2, 3, 8, 30, 144, 280, 5760, 45360, 44800, 3991680, 43545600, 172972800, 6706022400, 93405312000, 42268262400, 22230464256000, 376610217984000, 250298560512000, 11640679464960000, 196503623737344000, 17841281393295360000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2000

Keywords

Comments

Denominator of probability of a derangement of n things (A000166(n)/n!).
Also numerators of successive convergents to e using continued fraction 2 +1/(1 +1/(2 +2/(3 +3/(4 +4/(5 +5/(6 +6/(7 +7/8 +...))))))).

Examples

			1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.

Crossrefs

Cf. A053557 (numerators), A053518-A053520. See also A103816.
a(n) = (D(n, n) of A103360), A053557/A053556 = A000166/n! = (N(n, n) of A103361)/(D(n, n) of A103360).

Programs

  • Magma
    [Denominator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..20]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    Table[Denominator[Sum[(-1)^k/k!, {k, 0, n}]], {n, 0, 20}] (* Robert G. Wilson v, Oct 13 2005 *)
    Table[ Denominator[1 - Subfactorial[n]/n!], {n, 0, 22}] (* Jean-François Alcover, Feb 11 2014 *)
    Denominator[Accumulate[Table[(-1)^k/k!,{k,0,30}]]] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    for(n=0,50, print1(denominator(sum(k=0,n,(-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A053556(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).denominator # Chai Wah Wu, Jul 31 2023
  • Sage
    [denominator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..20)] # G. C. Greubel, May 16 2019
    

Formula

Let exp(-x)/(1-x) = Sum_{n>=0} (a_n/b_n) * x^n. Then sequence b_n is A053556. - Aleksandar Petojevic, Apr 14 2004

Extensions

More terms from Vladeta Jovovic, Mar 31 2000

A053557 Numerator of Sum_{k=0..n} (-1)^k/k!.

Original entry on oeis.org

1, 0, 1, 1, 3, 11, 53, 103, 2119, 16687, 16481, 1468457, 16019531, 63633137, 2467007773, 34361893981, 15549624751, 8178130767479, 138547156531409, 92079694567171, 4282366656425369, 72289643288657479, 6563440628747948887, 39299278806015611311
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2000

Keywords

Comments

Numerator of probability of a derangement of n things (A000166(n)/n! or !n/n!).
Also denominators of successive convergents to e using continued fraction 2 + 1/(1 + 1/(2 + 2/(3 + 3/(4 + 4/(5 + 5/(6 + 6/(7 + 7/(8 + ...)))))))).

Examples

			1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.

Crossrefs

Cf. A000166/A000142, A053556 (denominators), A053518-A053520. See also A103816.
a(n) = (N(n, n) of A103361), A053557/A053556 = A000166/n! = (N(n, n) of A103361)/(D(n, n) of A103360), Cf. A053518-A053520.

Programs

  • Magma
    [Numerator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    Numerator[CoefficientList[Series[Exp[-x]/(1-x), {x, 0, 30}], x]] (* Jean-François Alcover, Nov 18 2011 *)
    Table[Numerator[Sum[(-1)^k/k!,{k,0,n}]],{n,0,30}] (* Harvey P. Dale, Dec 02 2011 *)
    Join[{1, 0}, Numerator[RecurrenceTable[{a[n]==a[n-1]+a[n-2]/(n-2), a[1] ==0, a[2]==1}, a, {n,2,30}]]] (* Terry D. Grant, May 07 2017; corrected by G. C. Greubel, May 16 2019 *)
  • PARI
    for(n=0, 30, print1(numerator(sum(k=0,n, (-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A053557(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).numerator # Chai Wah Wu, Jul 31 2023
  • Sage
    [numerator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..30)] # G. C. Greubel, May 16 2019
    

Formula

Let exp(-x)/(1-x) = Sum_{n >= 0} (a_n/b_n)*x^n. Then sequence a_n is A053557. - Aleksandar Petojevic, Apr 14 2004

Extensions

More terms from Vladeta Jovovic, Mar 31 2000

A053520 Denominators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).

Original entry on oeis.org

2, 8, 38, 74, 1522, 11986, 11838, 1054766, 11506538, 45706526, 1772006854, 24681524038, 11169012898, 5874202721042, 99515904921182, 66139171377658, 3075946152109262, 51924337160029042, 4714400135799462226
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Examples

			Convergents are 1/2, 3/8, 15/38, 29/74, 597/1522, 4701/11986, ...
		

Crossrefs

Programs

  • Maple
    for j from 1 to 50 do printf(`%d,`,denom(cfrac([0,seq([i,i+1],i=1..j)]))); od:
  • Mathematica
    a[n_] := ContinuedFractionK[k, k+1, {k, n+1}] // Denominator; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 21 2016 *)

Extensions

More terms from James Sellers, Feb 02 2000

A053519 Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).

Original entry on oeis.org

1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Also numerators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).
A053518/A053519 -> (2*e-5)/(3-e) = 1.5496467783... as n-> infinity.

Examples

			Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.

Crossrefs

Programs

  • Maple
    for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
  • Mathematica
    num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)

Extensions

Thanks to R. K. Guy, Steven Finch, Bill Gosper for comments
More terms from James Sellers, Feb 02 2000

A174458 Partial sums of A053519.

Original entry on oeis.org

1, 4, 19, 48, 645, 5346, 9989, 423680, 4936673, 22863284, 717864203, 10398234146, 14778845999, 2318706892436, 41349958502663, 67290481692176, 1273710986008283, 21639017114636720, 1870679510063123381
Offset: 0

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Comments

Partial sums of denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))). The subsequence of primes in this partial sum begins: 19, 1273710986008283.

Examples

			a(16) = 1 + 3 + 15 + 29 + 597 + 4701 + 4643 + 413691 + 4512993 + 17926611 + 695000919 + 9680369943 + 4380611853 + 2303928046437 + 39031251610227 + 25940523189513 + 1206420504316107 = 1273710986008283 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A053519(i).
Showing 1-5 of 5 results.