A039596
Numbers that are simultaneously triangular and square pyramidal.
Original entry on oeis.org
0, 1, 55, 91, 208335
Offset: 1
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10 = 55, so 55 is in the sequence.
- Joe Roberts, Lure of the Integers, page 245 (entry for 645).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, p. 108.
- R. Finkelstein and H. London, On triangular numbers which are sums of consecutive squares, J. Number Theory 4 (1972), 455-462.
- M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.
- H. E. Thomas Jr., Problem 5634, Amer. Math. Monthly, 75 (1968), p. 1018.
A053611
Numbers k such that 1 + 4 + 9 + ... + k^2 = 1 + 2 + 3 + ... + m for some m.
Original entry on oeis.org
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10, so 5 is in the sequence.
- E. T. Avanesov, The Diophantine equation 3y(y+1) = x(x+1)(2x+1), Volz. Mat. Sb. Vyp., 8 (1971), 3-6.
- R. K. Guy, Unsolved Problems in Number Theory, Section D3.
- Joe Roberts, Lure of the Integers, page 245 (entry for 645).
-
istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then RETURN(true) else RETURN(false); fi; end;
M:=1000; for n from 1 to M do if istriangular(n*(n+1)*(2*n+1)/6) then lprint(n,n*(n+1)*(2*n+1)/6); fi; od: # N. J. A. Sloane
# second Maple program:
q:= n-> issqr(8*sum(j^2, j=1..n)+1):
select(q, [$1..100])[]; # Alois P. Heinz, Oct 10 2024
-
Select[Range[90], IntegerQ[(Sqrt[(4/3) * (# + 3 * #^2 + 2 * #^3) + 1] - 1)/2] &] (* Harvey P. Dale, Sep 22 2014 *)
A126973
a(n+1) is the smallest integer greater than a(n) such that the sum of the squares of its decimal digits is equal to a(n).
Original entry on oeis.org
1, 10, 13, 23, 1233, 33999999999999999
Offset: 1
10 --> 1^2+0^2 = 1+0 =1
13 --> 1^2+3^2 = 1+9 = 10
23 --> 2^2+3^2 = 4+9 =13
1233 --> 1^2+2^2+3^3+3^2 = 1+4+9+9 = 23
33999999999999999 = 3^2*2 + 9^2*15 = 1233
A136276
Consider pairs of nonnegative integers (m,k) such that 2^2 + 4^2 + 6^2 + ... + (2m)^2 = k(k+1); sequence gives k values.
Original entry on oeis.org
Ken Knowlton (www.KnowltonMosaics.com), Mar 29 2008
The known solutions are (m,k) = (0,0), (2,4), (3,7) and (17,84). There are no other solutions.
- John Cannon, Using MAGMA to prove there are no other solutions
- J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992,
- R. J. Stroeker and B. M. M. de Weger, Solving elliptic Diophantine equations: the general cubic case, Acta Arith. 87 (1999), 339-365.
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196.
May 26 2008: John Cannon used MAGMA to show there are no further solutions (see link)
Showing 1-4 of 4 results.
Comments