cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001753 Expansion of 1/((1+x)*(1-x)^6).

Original entry on oeis.org

1, 5, 16, 40, 86, 166, 296, 496, 791, 1211, 1792, 2576, 3612, 4956, 6672, 8832, 11517, 14817, 18832, 23672, 29458, 36322, 44408, 53872, 64883, 77623, 92288, 109088, 128248, 150008, 174624, 202368, 233529
Offset: 0

Views

Author

Keywords

Comments

Number of symmetric nonnegative integer 5 X 5 matrices with sum of elements equal to 4*n under action of dihedral group D_4.
a(n) = A108561(n+6,n) for n>0. - Reinhard Zumkeller, Jun 10 2005

Examples

			There are 5 symmetric nonnegative integer 5 X 5 matrices with sum of elements equal to 4 under action of D_4:
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[0 0 0 0 0] [1 0 0 0 1] [0 0 0 0 0] [0 1 0 1 0] [0 0 4 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0].
		

Crossrefs

Cf. A000217, A002620, A008804, A038163, A054343, A001769 (partial sums), A001752 (first differences), A169793 (binomial transf).

Programs

  • Magma
    [(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n+945)/960+(-1)^n/64: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-x)^6), {x, 0, 50}], x] (* G. C. Greubel, Nov 22 2017 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,5,16,40,86,166,296},40] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    a(n)=(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n)\/960+1 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = Sum{k=0..n} (-1)^(n-k)*binomial(k+5, 5); a(n) = (4*n^5 + 70*n^4 + 460*n^3 + 1400*n^2 + 1936*n + 945)/960 + (-1)^n/64. - Paul Barry, Jul 01 2003
a(n) = a(n-2) + (n*(n + 1)*(n + 2)*(n - 1))/24, a(1) = 0, a(2) = 1; (15*(-1)^n - 15*(-1)^(2*n) + 96*n - 160*(-1)^(2*n)*n + 200*n^2 - 200*(-1)^(2*n)*n^2 + 140*n^3 - 80*(-1)^(2*n)*n^3 + 40*n^4 - 10*(-1)^(2*n)*n^4 + 4*n^5)/960. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
a(n) + a(n+1) = A000389(n+6). - R. J. Mathar, Mar 14 2011

Extensions

Comment and example from Vladeta Jovovic, May 14 2000

A343875 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotations and reflections.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 4, 11, 3, 1, 0, 1, 8, 31, 24, 6, 1, 0, 1, 10, 84, 113, 55, 6, 1, 0, 1, 16, 198, 528, 410, 99, 10, 1, 0, 1, 20, 440, 2003, 2710, 1091, 181, 10, 1, 0, 1, 29, 904, 6968, 15233, 10488, 2722, 288, 15, 1, 0, 1, 35, 1766, 21593, 75258, 82704, 34399, 5806, 461, 15, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    4     8     10      16       20 ...
  3 | 1  3  11   31    84    198     440      904 ...
  4 | 1  3  24  113   528   2003    6968    21593 ...
  5 | 1  6  55  410  2710  15233   75258   331063 ...
  6 | 1  6  99 1091 10488  82704  563864  3376134 ...
  7 | 1 10 181 2722 34399 360676 3235551 25387944 ...
  ...
		

Crossrefs

Rows n=0..3 are A000007, A000012, A005232, A054343.
Columns 0..1 are A000012, A008805(n-1).
Cf. A054252 (binary case), A318795, A343097, A343874.

Programs

  • PARI
    U(n,s) = {(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)) + 2*s(1)^n*s(2)^(n*(n-1)/2) + 2*(s(1)^(n%2)*s(2)^(n\2))^n )/8}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A054771 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, up to rotational symmetry.

Original entry on oeis.org

1, 3, 13, 43, 129, 327, 761, 1619, 3238, 6098, 10974, 18930, 31550, 50930, 80030, 122666, 183999, 270525, 390755, 555205, 777287, 1073297, 1463583, 1972533, 2630044, 3471508, 4539660, 5884564, 7565868, 9652788, 12226860, 15381924
Offset: 0

Views

Author

Vladeta Jovovic, May 18 2000

Keywords

Crossrefs

Row n=3 of A343874.

Formula

G.f.: (x^8 - 2*x^7 + 6*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 6*x^2 - 2*x + 1)/((1 - x^4)^2*(1 - x^2)^2*(1 - x)^5).
Showing 1-3 of 3 results.