A054413 a(n) = 7*a(n-1) + a(n-2), with a(0)=1 and a(1)=7.
1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, 47301793, 337737401, 2411463600, 17217982601, 122937341807, 877779375250, 6267392968557, 44749530155149, 319514104054600, 2281348258537349, 16288951913816043, 116304011655249650, 830417033500563593
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcón and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.
- Sergio Falcón and Ángel Plaza, The k-Fibonacci sequence and the Pascal 2-triangle Chaos, Solitons & Fractals 2007; 33(1): 38-49.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Index entries for linear recurrences with constant coefficients, signature (7,1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
I:=[1, 7]; [n le 2 select I[n] else 7*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013
-
Mathematica
LinearRecurrence[{7, 1}, {1, 7}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
-
PARI
a(n)=([0,1; 1,7]^n*[1;7])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
Sage
[lucas_number1(n,7,-1) for n in range(1, 19)] # Zerinvary Lajos, Apr 24 2009
Formula
G.f.: 1/(1 - 7x - x^2).
a(n) = U(n, 7*i/2)*(-i)^n with i^2=-1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See A049310.
a(n) = F(n, 7), the n-th Fibonacci polynomial evaluated at x=7. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = (sigma^n - (-sigma)^(-n))/(sqrt(53)) with sigma = (7+sqrt(53))/2;
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*7^(n-1-2i). (End)
a(n) = ((7 + sqrt(53))^n - (7 - sqrt(53))^n)/(2^n*sqrt(53)). Offset 1. a(3)=50. - Al Hakanson (hawkuu(AT)gmail.com), Jan 17 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
(End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(53)-7)/2. - Vladimir Shevelev, Feb 23 2013
From Kai Wang, Feb 24 2020: (Start)
Sum_{m>=0} 1/(a(m)*a(m+2)) = 1/49.
Sum_{m>=0} 1/(a(2*m)*a(2*m+2)) = (sqrt(53)-7)/14.
In general, for sequences with recurrence f(n)= k*f(n-1)+f(n-2) and f(0)=1,
Sum_{m>=0} 1/(f(m)*f(m+2)) = 1/(k^2).
Sum_{m>=0} 1/(f(2*m)*f(2*m+2)) = (sqrt(k^2+4) - k)/(2*k). (End)
E.g.f.: (1/53)*exp(7*x/2)*(53*cosh(sqrt(53)*x/2) + 7*sqrt(53)*sinh(sqrt(53)*x/2)). - Stefano Spezia, Feb 26 2020
G.f.: x/(1 - 7*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 7 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
Extensions
Formula corrected by Johannes W. Meijer, May 30 2010, Jun 02 2010
Extended by T. D. Noe, May 23 2011
Comments