cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054487 a(n) = (3*n+4)*binomial(n+7, 7)/4.

Original entry on oeis.org

1, 14, 90, 390, 1320, 3762, 9438, 21450, 45045, 88660, 165308, 294372, 503880, 833340, 1337220, 2089164, 3187041, 4758930, 6970150, 10031450, 14208480, 19832670, 27313650, 37153350, 49961925, 66475656, 87576984, 114316840
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A034265.
Cf. A093563 ((6, 1) Pascal, column m=8).

Programs

  • GAP
    List([0..40], n-> (3*n+4)*Binomial(n+7, 7)/4 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [((3*n+4)*Binomial(n+7,7))/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    seq( (3*n+4)*binomial(n+7,7)/4, n=0..40); # G. C. Greubel, Jan 19 2020
  • Mathematica
    CoefficientList[Series[(1+5x)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Table[6*Binomial[n+8,8] -5*Binomial[n+7,7], {n,0,40}] (* G. C. Greubel, Jan 19 2020 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,14,90,390,1320,3762,9438,21450,45045},30] (* Harvey P. Dale, Jul 19 2022 *)
  • PARI
    a(n) = (3*n+4)*binomial(n+7, 7)/4; \\ Michel Marcus, Sep 07 2017
    
  • Sage
    [(3*n+4)*binomial(n+7, 7)/4 for n in (0..40)] # G. C. Greubel, Jan 19 2020
    

Formula

G.f.: (1+5*x)/(1-x)^9.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 6*binomial(n+8, 8) - 5*binomial(n+7, 7).
E.g.f.: (20160 +262080*x +635040*x^2 +540960*x^3 +205800*x^4 +38808*x^5 +3724*x^6 +172*x^7 +3*x^8)*exp(x)/20160. (End)
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Wesley Ivan Hurt, Jun 07 2021

Extensions

Corrected and extended by James Sellers, May 10 2000