A054488 Expansion of (1+2*x)/(1-6*x+x^2).
1, 8, 47, 274, 1597, 9308, 54251, 316198, 1842937, 10741424, 62605607, 364892218, 2126747701, 12395593988, 72246816227, 421085303374, 2454265004017, 14304504720728, 83372763320351, 485932075201378, 2832219687887917
Offset: 0
Examples
8 = a(1) = sqrt((A077240(1)^2 - 17)/8) = sqrt((23^2 - 17)/8)= sqrt(64) = 8.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Programs
-
GAP
a:=[1,8];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
-
Magma
I:=[1,8]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
-
Magma
R
:=PowerSeriesRing(Integers(), 21); Coefficients(R!( (1+2*x)/(1-6*x+x^2))); // Marius A. Burtea, Jan 20 2020 -
Maple
a[0]:=1: a[1]:=8: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
-
Mathematica
LinearRecurrence[{6,-1},{1,8},30] (* Harvey P. Dale, Oct 09 2017 *) Table[(LucasL[2*n+1, 2] + Fibonacci[2*n, 2])/2, {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
-
PARI
my(x='x+O('x^30)); Vec((1+2*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jan 19 2020
-
PARI
apply( {A054488(n)=[1,8]*([0,-1;1,6]^n)[,1]}, [0..30]) \\ M. F. Hasler, Feb 27 2020
-
Sage
[(lucas_number2(2*n+1,2,-1) + lucas_number1(2*n,2,-1))/2 for n in (0..30)] # G. C. Greubel, Jan 19 2020
Formula
a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=8.
a(n) = ((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1) + 2*((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n))/(4*sqrt(2)).
a(n) = S(n, 6) + 2*S(n-1, 6), with S(n, x) Chebyshev's polynomials of the second kind, A049310. S(n, 6) = A001109(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-9)^k. - Philippe Deléham, Mar 05 2014
a(n) = (Pell(2*n+2) + 2*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + Pell(2*n))/2. - G. C. Greubel, Jan 19 2020
E.g.f.: (1/4)*exp(3*x)*(4*cosh(2*sqrt(2)*x) + 5*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Jan 27 2020
Extensions
More terms from James Sellers, May 05 2000
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
Comments