cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054488 Expansion of (1+2*x)/(1-6*x+x^2).

Original entry on oeis.org

1, 8, 47, 274, 1597, 9308, 54251, 316198, 1842937, 10741424, 62605607, 364892218, 2126747701, 12395593988, 72246816227, 421085303374, 2454265004017, 14304504720728, 83372763320351, 485932075201378, 2832219687887917
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
b(n)^2 - 8*a(n)^2 = 17, with the companion sequence b(n)= A077240(n).
The odd part is A077413(n) with Diophantine companion A077239(n).

Examples

			8 = a(1) = sqrt((A077240(1)^2 - 17)/8) = sqrt((23^2 - 17)/8)= sqrt(64) = 8.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A077241 (even and odd parts).

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 21); Coefficients(R!( (1+2*x)/(1-6*x+x^2))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a[0]:=1: a[1]:=8: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    LinearRecurrence[{6,-1},{1,8},30] (* Harvey P. Dale, Oct 09 2017 *)
    Table[(LucasL[2*n+1, 2] + Fibonacci[2*n, 2])/2, {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+2*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jan 19 2020
    
  • PARI
    apply( {A054488(n)=[1,8]*([0,-1;1,6]^n)[,1]}, [0..30]) \\ M. F. Hasler, Feb 27 2020
    
  • Sage
    [(lucas_number2(2*n+1,2,-1) + lucas_number1(2*n,2,-1))/2 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=8.
a(n) = ((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1) + 2*((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n))/(4*sqrt(2)).
a(n) = S(n, 6) + 2*S(n-1, 6), with S(n, x) Chebyshev's polynomials of the second kind, A049310. S(n, 6) = A001109(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-9)^k. - Philippe Deléham, Mar 05 2014
a(n) = (Pell(2*n+2) + 2*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + Pell(2*n))/2. - G. C. Greubel, Jan 19 2020
E.g.f.: (1/4)*exp(3*x)*(4*cosh(2*sqrt(2)*x) + 5*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Jan 27 2020

Extensions

More terms from James Sellers, May 05 2000
Chebyshev comments from Wolfdieter Lang, Nov 08 2002