cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054554 a(n) = 4*n^2 - 10*n + 7.

Original entry on oeis.org

1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, 1123, 1261, 1407, 1561, 1723, 1893, 2071, 2257, 2451, 2653, 2863, 3081, 3307, 3541, 3783, 4033, 4291, 4557, 4831, 5113, 5403, 5701, 6007, 6321, 6643, 6973, 7311, 7657, 8011, 8373, 8743
Offset: 1

Views

Author

Keywords

Comments

Move in 1-3 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 2, 8, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Ulam's spiral (NE spoke). - Robert G. Wilson v, Oct 31 2011
Number of ternary strings of length 2*(n-1) that have one or no 0's, one or no 1's, and an even number of 2's. For n=2, the 3 strings of length 2 are 01, 10 and 22. For n=3, the 13 strings of length 4 are the 12 permutations of 0122 and 2222. - Enrique Navarrete, Jul 25 2025

Crossrefs

Cf. A014105.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n + a(n-1) - 14 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -x*(7*x^2+1)/(x-1)^3. - Colin Barker, Sep 21 2012
For n > 2, a(n) = A014105(n) + A014105(n-1). - Bruce J. Nicholson, May 07 2017
From Leo Tavares, Feb 21 2022: (Start)
a(n) = A003215(n-2) + 2*A000217(n-1). See Hexagonal Dual Rays illustration in links.
a(n) = A227776(n-1) - 4*A000217(n-1). (End)
a(k+1) = 4k^2 - 2k + 1 in the Numberphile video. - Frank Ellermann, Mar 11 2020
E.g.f.: exp(x)*(7 - 6*x + 4*x^2) - 7. - Stefano Spezia, Apr 24 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002