A054554 a(n) = 4*n^2 - 10*n + 7.
1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, 1123, 1261, 1407, 1561, 1723, 1893, 2071, 2257, 2451, 2653, 2863, 3081, 3307, 3541, 3783, 4033, 4291, 4557, 4831, 5113, 5403, 5701, 6007, 6321, 6643, 6973, 7311, 7657, 8011, 8373, 8743
Offset: 1
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- James Grime and Brady Haran, Prime Spirals, Numberphile video (2013).
- Scientific American, Cover of the March 1964 issue
- Leo Tavares, Illustration: Hexagonal Dual Rays
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A014105.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Programs
-
Maple
A054554:=n->4*n^2 -10*n + 7; seq(A054554(k),k=1..100); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
f[n_] := 4n^2 -10n + 7; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *) LinearRecurrence[{3,-3,1},{1,3,13},60] (* Harvey P. Dale, Jan 20 2025 *)
-
PARI
a(n)=4*n^2-10*n+7 \\ Charles R Greathouse IV, Nov 05 2013
Formula
a(n) = 8*n + a(n-1) - 14 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -x*(7*x^2+1)/(x-1)^3. - Colin Barker, Sep 21 2012
From Leo Tavares, Feb 21 2022: (Start)
a(k+1) = 4k^2 - 2k + 1 in the Numberphile video. - Frank Ellermann, Mar 11 2020
E.g.f.: exp(x)*(7 - 6*x + 4*x^2) - 7. - Stefano Spezia, Apr 24 2024
Extensions
Edited by Frank Ellermann, Feb 24 2002
Comments