cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054563 a(n) = n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72.

Original entry on oeis.org

0, 0, 6, 45, 190, 595, 1540, 3486, 7140, 13530, 24090, 40755, 66066, 103285, 156520, 230860, 332520, 468996, 649230, 883785, 1185030, 1567335, 2047276, 2643850, 3378700, 4276350, 5364450, 6674031, 8239770, 10100265, 12298320, 14881240
Offset: 0

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of labeled pure 2-complexes on n nodes with 2 2-simplexes.

References

  • L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 353.

Crossrefs

Programs

  • Magma
    [n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72: n in [0..40]]; // Vincenzo Librandi, Sep 21 2011
    
  • Mathematica
    Binomial[Binomial[Range[2,40],3],2] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,6,45,190,595,1540},40] (* Harvey P. Dale, Sep 20 2011 *)
  • PARI
    a(n)=n*(n^2-1)*(n+2)*(n^2+4*n+6)/72 \\ Charles R Greathouse IV, Feb 19 2017
  • Sage
    [(binomial(binomial(n,3),2)) for n in range(2, 34)] # Zerinvary Lajos, Nov 30 2009
    

Formula

C(C(n, 3), 2) = 6*C(n, 4) + 15*C(n, 5) + 10*C(n, 6) = n*(n-1)*(n-2)*(n-3)*(n^2+2)/72 = a(n-2).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(2)=0, a(3)=0, a(4)=6, a(5)=45, a(6)=190, a(7)=595, a(8)=1540. - Harvey P. Dale, Sep 20 2011
G.f.: -((x^2*(x*(x+3)+6))/(x-1)^7). - Harvey P. Dale, Sep 20 2011
a(n) = (binomial(n+2,3)^2 - binomial(n+2,3))/2, n > 0. - Gary Detlefs, Nov 23 2011
a(n) = Sum_{k=1..3} (-1)^(k+1)*binomial(n+2,3+k)*binomial(n+2,3-k). - Gerry Martens, Oct 11 2022
a(n) = A373733(n) - A000292(n). - J.S. Seneschal, Jul 08 2025
E.g.f.: exp(x)*x^2*(216 + 324*x + 138*x^2 + 21*x^3 + x^4)/72. - Stefano Spezia, Jul 09 2025

Extensions

More terms from James Sellers, Apr 11 2000
Offset changed from 2 to 0 by Vincenzo Librandi, Sep 21 2011