cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185651 A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 20, 33, 24, 5, 0, 0, 6, 30, 72, 96, 40, 6, 0, 0, 7, 42, 135, 280, 255, 84, 7, 0, 0, 8, 56, 228, 660, 1040, 780, 140, 8, 0, 0, 9, 72, 357, 1344, 3145, 4200, 2205, 288, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2013

Keywords

Comments

Dirichlet convolution of phi(n) and k^n. - Richard L. Ollerton, May 07 2021

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,     0, ...
  0, 1,  2,   3,    4,     5,     6, ...
  0, 2,  6,  12,   20,    30,    42, ...
  0, 3, 12,  33,   72,   135,   228, ...
  0, 4, 24,  96,  280,   660,  1344, ...
  0, 5, 40, 255, 1040,  3145,  7800, ...
  0, 6, 84, 780, 4200, 15810, 46956, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)

Formula

A(n,k) = Sum_{d|n} phi(d)*k^(n/d).
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258170(n,i). - Alois P. Heinz, May 22 2015
G.f. for column k: Sum_{n>=1} phi(n)*k*x^n/(1-k*x^n) for k >= 0. - Petros Hadjicostas, Nov 06 2017
From Richard L. Ollerton, May 07 2021: (Start)
A(n,k) = Sum_{i=1..n} k^gcd(n,i).
A(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
A(n,k) = A075195(n,k)*n for n >= 1, k >= 1. (End)

A054627 Number of n-bead necklaces with 8 colors.

Original entry on oeis.org

1, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 14913200, 107377488, 780903152, 5726645688, 42288908768, 314146329192, 2345624810432, 17592187093524, 132458812569728, 1000799924679192, 7585009898729264, 57646075284033552, 439208192231379680
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			G.f. = 1 + 8*x + 36*x^2 + 176*x^3 + 1044*x^4 + 6560*x^5 + 43800*x^6 + ...
		

Crossrefs

Column 8 of A075195.
Column k=1 of A184294.
Cf. A054615.

Programs

  • Maple
    with(combstruct):A:=[N,{N=Cycle(Union(Z$8))},unlabeled]: seq(count(A,size=n),n=0..20); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-8*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    k=8; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
  • PARI
    a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*8^(n/d))); \\ Altug Alkan, Sep 21 2018

Formula

a(n) = (1/n)*Sum_{d|n} phi(d)*8^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 8*x^n)/n. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 8^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021

Extensions

Edited by Christian G. Bower, Sep 07 2002
a(0) corrected by Herbert Kociemba, Nov 02 2016
Showing 1-2 of 2 results.