cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054861 Greatest k such that 3^k divides n!.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5, 6, 6, 6, 8, 8, 8, 9, 9, 9, 10, 10, 10, 13, 13, 13, 14, 14, 14, 15, 15, 15, 17, 17, 17, 18, 18, 18, 19, 19, 19, 21, 21, 21, 22, 22, 22, 23, 23, 23, 26, 26, 26, 27, 27, 27, 28, 28, 28, 30, 30, 30, 31, 31, 31, 32, 32, 32, 34, 34, 34, 35, 35
Offset: 0

Views

Author

Henry Bottomley, May 22 2000

Keywords

Comments

Also the number of trailing zeros in the base-3 representation of n!. - Hieronymus Fischer, Jun 18 2007
Also the highest power of 6 dividing n!. - Hieronymus Fischer, Aug 14 2007
A column of A090622. - Alois P. Heinz, Oct 05 2012
The 'missing' values are listed in A096346. - Stanislav Sykora, Jul 16 2014

Examples

			a(100) = 48.
a(10^3) = 498.
a(10^4) = 4996.
a(10^5) = 49995.
a(10^6) = 499993.
a(10^7) = 4999994.
a(10^8) = 49999990.
a(10^9) = 499999993.
		

Crossrefs

Cf. A011371 (for analog involving powers of 2). See also A027868.
Cf. A004128 (for a(3n)).

Programs

Formula

a(n) = floor(n/3) + floor(n/9) + floor(n/27) + floor(n/81) + ... .
a(n) = (n - A053735(n))/2.
a(n+1) = Sum_{k=1..n} A007949(k). - Benoit Cloitre, Mar 24 2002
From Hieronymus Fischer, Jun 18, Jun 25 and Aug 14 2007: (Start)
G.f.: (1/(1-x))*Sum_{k>0} x^(3^k)/(1-x^(3^k)).
a(n) = Sum_{k=3..n} Sum_{j>=3, j|k} (floor(log_3(j)) - floor(log_3(j-1))).
G.f.: L[b(k)](x)/(1-x), where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = 1, if k>1 is a power of 3, otherwise b(k)=0.
G.f.: (1/(1-x))*Sum_{k>0} c(k)*x^k, where c(k) = Sum_{j>1, j|k} (floor(log_3(j)) - floor(log_3(j-1))).
Recurrence:
a(n) = floor(n/3) + a(floor(n/3));
a(3*n) = n + a(n);
a(n*3^m) = n*(3^m-1)/2 + a(n).
a(k*3^m) = k*(3^m-1)/2, for 0 <= k < 3, m >= 0.
Asymptotic behavior:
a(n) = n/2 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/2; equality holds for powers of 3.
a(n) >= (n-2)/2 - floor(log_3(n)); equality holds for n = 3^m - 1, m > 0.
lim inf (n/2 - a(n)) = 1/2 for n->oo.
lim sup (n/2 - log_3(n) - a(n)) = 0 for n->oo.
lim sup (a(n+1) - a(n) - log_3(n)) = 0 for n->oo. (End)
a(n) = A007949(n!). - R. J. Mathar, Sep 03 2016
From R. J. Mathar, Jul 08 2021: (Start)
a(n) = A122841(n!).
Partial sums of A007949. (End)
a(n) = A007949(A000142(n)). - David A. Corneth, Nov 02 2023

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012
New name by David A. Corneth, Nov 02 2023