A054925 a(n) = ceiling(n*(n-1)/4).
0, 0, 1, 2, 3, 5, 8, 11, 14, 18, 23, 28, 33, 39, 46, 53, 60, 68, 77, 86, 95, 105, 116, 127, 138, 150, 163, 176, 189, 203, 218, 233, 248, 264, 281, 298, 315, 333, 352, 371, 390, 410, 431, 452, 473, 495, 518, 541, 564, 588, 613, 638, 663, 689, 716, 743, 770, 798
Offset: 0
Examples
a(6) = 8; ceiling(6*(6-1)/4) = ceiling(30/4) = 8. G.f. = x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 14*x^8 + 18*x^9 + 23*x^10 + ...
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..10000
- Craig Knecht, Binary fill patterns in a triangle refilled with natural numbers.
- Eric Weisstein's World of Mathematics, Edge Cover Number.
- Eric Weisstein's World of Mathematics, Triangular Honeycomb Bishop Graph.
- Eric Weisstein's World of Mathematics, Triangular Honeycomb Queen Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Crossrefs
Programs
-
JavaScript
p=new Array(0,0,0,0); for (a=0;a<100;a++) { p[a%4]+=a; document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]+p[3]*p[3]))+", "); } /* Jon Perry, Apr 16 2013 */
-
Magma
[ Ceiling(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Magma
I:=[0,0,1,2,3]; [n le 5 select I[n] else 3*Self(n-1)-4*Self(n-2)+4*Self(n-3)-3*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jul 14 2015
-
Maple
seq(ceil(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
-
Mathematica
Table[Ceiling[(n^2 - n)/4], {n, 0, 20}] (* Wesley Ivan Hurt, Nov 01 2013 *) LinearRecurrence[{3, -4, 4, -3, 1}, {0, 0, 1, 2, 3}, 60] (* Vincenzo Librandi, Jul 14 2015 *) Join[{0}, Ceiling[#/2] &/ @ Accumulate[Range[0, 60]]] (* Harvey P. Dale, Oct 03 2016 *) Ceiling[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Dec 13 2024 *) Table[Ceiling[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Dec 13 2024 *) Table[(1 + (n - 1) n - Cos[n Pi/2] - Sin[n Pi/2])/4, {n, 0, 20}] (* Eric W. Weisstein, Dec 13 2024 *) CoefficientList[Series[x^2 (-1 + x - x^2)/((-1 + x)^3 (1 + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 13 2024 *)
-
PARI
{a(n) = ceil( n * (n-1)/4)}; /* Michael Somos, Feb 11 2004 */
-
Sage
[ceil(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
Formula
Euler transform of length 6 sequence [ 2, 0, 1, 1, 0, -1]. - Michael Somos, Sep 02 2006
From Michael Somos, Feb 11 2004: (Start)
G.f.: x^2 * (x^2 - x + 1) / ((1 - x)^3 * (1 + x^2)) = x^2 * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)).
a(1-n) = a(n).
A011848(n) = a(-n). (End)
From Michael Somos, Mar 01 2014: (Start)
a(n + 4) = a(n) + 2*n + 3.
a(n+1) = floor( sqrt( A238604(n))). (End)
Sum_{n>=2} 1/a(n) = 4 - Pi + 2*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(1/sqrt(2)+cosh(sqrt(7)*Pi/4))). - Amiram Eldar, Dec 23 2024
Comments
Raul Prisacariu, Sep 01 2024