cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055151 Triangular array of Motzkin polynomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 2, 1, 10, 10, 1, 15, 30, 5, 1, 21, 70, 35, 1, 28, 140, 140, 14, 1, 36, 252, 420, 126, 1, 45, 420, 1050, 630, 42, 1, 55, 660, 2310, 2310, 462, 1, 66, 990, 4620, 6930, 2772, 132, 1, 78, 1430, 8580, 18018, 12012, 1716, 1, 91, 2002, 15015, 42042
Offset: 0

Views

Author

Michael Somos, Jun 14 2000

Keywords

Comments

T(n,k) = number of Motzkin paths of length n with k up steps. T(n,k)=number of 0-1-2 trees with n edges and k+1 leaves, n>0. (A 0-1-2 tree is an ordered tree in which every vertex has at most two children.) E.g., T(4,1)=6 because we have UDHH, UHDH, UHHD, HHUD, HUHD, HUDH, where U=(1,1), D(1,-1), H(1,0). - Emeric Deutsch, Nov 30 2003
Coefficients in series reversion of x/(1+H*x+U*D*x^2) corresponding to Motzkin paths with H colors for H(1,0), U colors for U(1,1) and D colors for D(1,-1). - Paul Barry, May 16 2005
Eigenvector equals A119020, so that A119020(n) = Sum_{k=0..[n/2]} T(n,k)*A119020(k). - Paul D. Hanna, May 09 2006
Row reverse of A107131. - Peter Bala, May 07 2012
Also equals the number of 231-avoiding permutations of n+1 for which descents(w) = peaks(w) = k, where descents(w) is the number of positions i such that w[i]>w[i+1], and peaks(w) is the number of positions i such that w[i-1]w[i+1]. For example, T(4,1) = 6 because 13245, 12435, 14235, 12354, 12534, 15234 are the only 231-avoiding permutations of 5 elements with descents(w) = peaks(w) = 1. - Kyle Petersen, Aug 02 2013
Apparently, a refined irregular triangle related to this triangle (and A097610) is given in the Alexeev et al. link on p. 12. This entry's triangle is also related through Barry's comment to A125181 and A134264. The diagonals of this entry are the rows of A088617. - Tom Copeland, Jun 17 2015
The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - Wolfdieter Lang, Aug 24 2015

Examples

			The irregular triangle T(n,k) begins:
n\k 0  1   2    3   4  5 ...
0:  1
1:  1
2:  1  1
3:  1  3
4:  1  6   2
5:  1 10  10
6:  1 15  30    5
7:  1 21  70   35
8:  1 28 140  140  14
9:  1 36 252  420 126
10: 1 45 420 1050 630 42
... reformatted. - _Wolfdieter Lang_, Aug 24 2015
		

References

  • Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press (2015), page 617, Corollary 10.8.2
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.

Crossrefs

A107131 (row reversed), A080159 (with trailing zeros), A001006 = row sums, A000108(n) = T(2n, n), A001700(n) = T(2n+1, n), A119020 (eigenvector), A001263 (Narayana numbers), A089627 (gamma vectors of type B associahedra), A101280 (gamma vectors of type A permutohedra).
Cf. A014531.

Programs

  • Maple
    b:= proc(x, y) option remember;
          `if`(y>x or y<0, 0, `if`(x=0, 1, expand(
           b(x-1, y) +b(x-1, y+1) +b(x-1, y-1)*t)))
        end:
    T:= n-> (p-> seq(coeff(p, t, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Feb 05 2014
  • Mathematica
    m=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#,#>0&]&, CoefficientList[ Series[m,{x,0,15}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
    p[n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4 x]; Table[CoefficientList[p[n], x], {n, 0, 13}] // Flatten (* Peter Luschny, Jan 23 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, n! / ((n-2*k)! * k! * (k+1)!))}
    
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt((1 - x)^2 - 4*y*x^2 + x * O(x^n))), n), k))} /* Michael Somos, Feb 14 2006 */
    
  • PARI
    {T(n, k) = n++; if( k<0 || 2*k>n, 0, polcoeff( polcoeff( serreverse( x / (1 + x + y*x^2) + x * O(x^n)), n), k))} /* Michael Somos, Feb 14 2006 */

Formula

T(n,k) = n!/((n-2k)! k! (k+1)!) = A007318(n, 2k)*A000108(k). - Henry Bottomley, Jan 31 2003
E.g.f. row polynomials R(n,y): exp(x)*BesselI(1, 2*x*sqrt(y))/(x*sqrt(y)). - Vladeta Jovovic, Aug 20 2003
G.f. row polynomials R(n,y): 2 / (1 - x + sqrt((1 - x)^2 - 4 *y * x^2)).
From Peter Bala, Oct 28 2008: (Start)
The rows of this triangle are the gamma vectors of the n-dimensional (type A) associahedra (Postnikov et al., p. 38). Cf. A089627 and A101280.
The row polynomials R(n,x) = Sum_{k = 0..n} T(n,k)*x^k begin R(0,x) = 1, R(1,x) = 1, R(2,x) = 1 + x, R(3,x) = 1 + 3*x. They are related to the Narayana polynomials N(n,x) := Sum_{k = 1..n} (1/n)*C(n,k)*C(n,k-1)*x^k through x*(1 + x)^n*R(n, x/(1 + x)^2) = N(n+1,x). For example, for n = 3, x*(1 + x)^3*(1 + 3*x/(1 + x)^2) = x + 6*x^2 + 6*x^3 + x^4, the 4th Narayana polynomial.
Recursion relation: (n + 2)*R(n,x) = (2*n + 1)*R(n-1,x) - (n - 1)*(1 - 4*x)*R(n-2,x), R(0,x) = 1, R(1,x) = 1. (End)
G.f.: M(x,y) satisfies: M(x,y)= 1 + x M(x,y) + y*x^2*M(x,y)^2. - Geoffrey Critzer, Feb 05 2014
T(n,k) = A161642(n,k)*A258820(n,k) = (binomial(n,k)/A003989(n+1, k+1))* A258820(n,k). - Tom Copeland, Jun 18 2015
Let T(n,k;q) = n!*(1+k)/((n-2*k)!*(1+k)!^2)*hypergeom([k,2*k-n],[k+2],q) then T(n,k;0) = A055151(n,k), T(n,k;1) = A008315(n,k) and T(n,k;-1) = A091156(n,k). - Peter Luschny, Oct 16 2015
From Tom Copeland, Jan 21 2016: (Start)
Reversed rows of A107131 are rows of this entry, and the diagonals of A107131 are the columns of this entry. The diagonals of this entry are the rows of A088617. The antidiagonals (bottom to top) of A088617 are the rows of this entry.
O.g.f.: [1-x-sqrt[(1-x)^2-4tx^2]]/(2tx^2), from the relation to A107131.
Re-indexed and signed, this triangle gives the row polynomials of the compositional inverse of the shifted o.g.f. for the Fibonacci polynomials of A011973, x / [1-x-tx^2] = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... . (End)
Row polynomials are P(n,x) = (1 + b.y)^n = Sum{k=0 to n} binomial(n,k) b(k) y^k = y^n M(n,1/y), where b(k) = A126120(k), y = sqrt(x), and M(n,y) are the Motzkin polynomials of A097610. - Tom Copeland, Jan 29 2016
Coefficients of the polynomials p(n,x) = hypergeom([(1-n)/2, -n/2], [2], 4x). - Peter Luschny, Jan 23 2018
Sum_{k=1..floor(n/2)} k * T(n,k) = A014531(n-1) for n>1. - Alois P. Heinz, Mar 29 2020