A055209 a(n) = Product_{i=0..n} i!^2.
1, 1, 4, 144, 82944, 1194393600, 619173642240000, 15728001190723584000000, 25569049282962188245401600000000, 3366980847587422591723894776791040000000000, 44337041641882947649156022595410930014617600000000000000
Offset: 0
References
- R. Bruce King, Beyond The Quartic Equation, Birkhauser Boston, Berlin, 1996, p. 72.
- Srinivasa Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
- T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..32
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- Richard Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Vol. 107, No. 6 (2000), pp. 557-560.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 7.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Christian Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
- H. A. Schwarz and K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Springer, Berlin, 1893, p. 19.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., Vol. 332, No. 1 (2007), pp. 292-314; see pp. 305-306.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
Magma
[1] cat [(&*[(Factorial(k))^2: k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
-
Maple
seq(mul(mul(j^2,j=1..k), k=0..n), n=0..10); # Zerinvary Lajos, Sep 21 2007
-
Mathematica
Table[Product[(i!)^2,{i,n}],{n,0,11}] (* Harvey P. Dale, Jul 06 2011 *) Table[BarnesG[n + 2]^2, {n, 0, 11}] (* Jan Mangaldan, May 07 2014 *)
-
PARI
a(n)=prod(i=1,n,i!)^2 \\ Charles R Greathouse IV, Jan 12 2012
-
Sage
def A055209(n) : return prod(factorial(i)^(2) for i in (0..n)) [A055209(n) for n in (0..11)] # Jani Melik, Jun 06 2015
Formula
a(n) = A000178(n)^2. - Philippe Deléham, Mar 06 2004
a(n) = Product_{i=0..n} i^(2*n - 2*i + 2). - Charles R Greathouse IV, Jan 12 2012
Asymptotic: a(n) ~ exp(2*zeta'(-1)-3/2*(1+n^2)-3*n)*(2*Pi)^(n+1)*(n+1)^ (n^2+2*n+5/6). - Peter Luschny, Jun 23 2012
lim_{n->infinity} a(n)^(2^(-(n+1))) = 1. - Vaclav Kotesovec, Jun 06 2015
Sum_{n>=0} 1/a(n) = A258619. - Amiram Eldar, Nov 17 2020
Comments