cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A375906 Positions of primes in the sequence of numbers of the form 2^t * 3^u + 1 (A055600).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 14, 18, 20, 21, 24, 25, 28, 32, 33, 35, 38, 42, 43, 44, 51, 52, 54, 55, 68, 70, 75, 76, 87, 91, 95, 107, 108, 114, 122, 128, 134, 137, 138, 139, 142, 146, 150, 154, 156, 162, 176, 177, 187, 193, 198, 206, 214, 232, 234, 237, 242, 246, 248, 250
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{lim = 10^10}, Position[Sort@ Flatten@ Table[2^i*3^j + 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], _?PrimeQ] // Flatten]
  • PARI
    lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j + 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(i, ", ")));}

Formula

A055600(a(n)) = A003586(a(n)) + 1 = A005109(n).

A005109 Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993, 1769473, 1990657
Offset: 1

Views

Author

Keywords

Comments

The definition is given by Guy: a prime p is in class 1- if the only prime divisors of p - 1 are 2 or 3; and p is in class r- if every prime factor of p - 1 is in some class <= r- - 1, with equality for at least one prime factor. - N. J. A. Sloane, Sep 22 2012
See A005105 for the definition of class r+ primes.
Gleason, p. 191: a regular polygon of n sides can be constructed by ruler, compass and angle-trisector iff n = 2^r * 3^s * p_1 * p_2 * ... * p_k, where p_1, p_2, ..., p_k are distinct elements of this sequence and > 3.
Sequence gives primes solutions to p == +1 (mod phi(p-1)). - Benoit Cloitre, Feb 22 2002
These are the primes p for which p-1 is 3-smooth. Primes for which either p+1 or p-1 have many small factors are more easily proved prime, so most of the largest primes found have this property. - Michael B. Porter, Feb 19 2013
For terms p > 3, omega(p-1) = 3 - p mod 3. Consider terms > 3. Clearly, t > 0. If p == 1 mod 3, u > 0: hence omega(p-1) = 2 because p-1 has two prime factors. If p == 2 mod 3, u = 0: hence omega(p-1) = 1 because p-1 is a power of 2. The latter case corresponds to terms that are Fermat primes > 3. Similar arguments demonstrate the converse, that for p > 3, if omega(p-1) = 3 - p mod 3, p is a term. - Chris Boyd, Mar 22 2014
The subset of A055600 which are prime. - Robert G. Wilson v, Jul 19 2014
Named after the American mathematician James Pierpont (1866-1938). - Amiram Eldar, Jun 09 2021

Examples

			97 = 2^5*3 + 1 is a term.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, section A18, p. 66.
  • George E. Martin, Geometric Constructions, Springer, 1998. ISBN 0-387-98276-0.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,3]  then Add(C,Position(B,i)); fi; od;
    A005109:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
    
  • Magma
    [p: p in PrimesUpTo(10^8) | forall{d: d in PrimeDivisors(p-1) | d le 3}]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3, 6300], ClassMinusNbr[ Prime[ # ]] == 1 &]]
    Select[Prime /@ Range[10^5], Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Nov 01 2005 *)
    mx = 2*10^6; Select[Sort@ Flatten@ Table[2^i*3^j + 1, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}], PrimeQ] (* Robert G. Wilson v, Jul 16 2014, edited by Michael De Vlieger, Aug 23 2017 *)
  • PARI
    N=10^8; default(primelimit,N);
    pq(p)={p-=1; (p/(2^valuation(p,2)*3^valuation(p,3)))==1;}
    forprime(p=2,N,if(pq(p),print1(p,", ")));
    /* Joerg Arndt, Sep 22 2012 */
    
  • PARI
    /* much more efficient: */
    A005109_upto(lim=1e10)={my(L=List(), k2=1);
    until ( lim <= k2 *= 2, my(k23 = k2);
        until ( lim <= k23 *= 3, isprime(k23+1) && listput(L, k23+1));
    ); Set(L) } /* Joerg Arndt, Sep 22 2012, edited by M. F. Hasler, Mar 17 2024 */
    
  • PARI
    N=10^8; default(primelimit, N);
    print1("2, 3, ");forprime(p=5,N,if(omega(p-1)==3-p%3,print1(p", "))) \\ Chris Boyd, Mar 22 2014
    
  • Python
    from itertools import islice
    from sympy import nextprime
    def A005109_gen(): # generator of terms
        p = 2
        while True:
            q = p-1
            q >>= (~q&q-1).bit_length()
            a, b = divmod(q,3)
            while not b:
                a, b = divmod(q:=a,3)
            if q==1:
                yield p
            p = nextprime(p)
    A005109_list = list(islice(A005109_gen(),30)) # Chai Wah Wu, Mar 17 2023

Formula

A122257(a(n)) = 1; A122258(n) = number of Pierpont primes <= n; A122260 gives numbers having only Pierpont primes as factors. - Reinhard Zumkeller, Aug 29 2006
{primes p: A126805(PrimePi(p)) = 1}. - R. J. Mathar, Sep 24 2012
a(n) = 2^A374577(n) * 3^A374578(n) + 1. - Amiram Eldar, Sep 02 2024

Extensions

Comments and additional references from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
More terms from David W. Wilson
More terms from Benoit Cloitre, Feb 22 2002
More terms from Robert G. Wilson v, Mar 20 2003

A113432 Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.

Original entry on oeis.org

4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Examples

			a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.

A069353 Numbers of form 2^i*3^j - 1 with i, j >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 11, 15, 17, 23, 26, 31, 35, 47, 53, 63, 71, 80, 95, 107, 127, 143, 161, 191, 215, 242, 255, 287, 323, 383, 431, 485, 511, 575, 647, 728, 767, 863, 971, 1023, 1151, 1295, 1457, 1535, 1727, 1943, 2047, 2186, 2303, 2591, 2915, 3071, 3455, 3887
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

Are there infinitely many primes in this sequence? See A005105.
If m is a term then also 2*m + 1 and 3*m + 2.

Crossrefs

Programs

  • Mathematica
    With[{max = 4000}, Sort[Flatten[Table[2^i*3^j - 1, {i, 0, Log2[max]}, {j, 0, Log[3, max/2^i]}]]]] (* Amiram Eldar, Jul 13 2023 *)
  • Python
    from sympy import integer_log
    def A069353(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x+1)//3**i).bit_length() for i in range(integer_log(x+1,3)[0]+1))
        return bisection(f,n-1,n-1) # Chai Wah Wu, Mar 31 2025

Formula

a(n) = A003586(n)-1.

A111344 Pierpont 4-almost primes: numbers with exactly 4 prime divisors, not necessarily distinct, of the form 2^K*3^L + 1.

Original entry on oeis.org

513, 13825, 32769, 59050, 110593, 157465, 177148, 186625, 262145, 279937, 497665, 1259713, 1327105, 2097153, 2125765, 2519425, 4718593, 4782970, 5668705, 6718465, 17915905, 18874369, 22674817, 33554433, 38263753, 56623105
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 513 = (2^9)*(3^0)+1 = 3 * 3 * 3 * 19.
a(2) = 13825 = (2^9)*(3^3)+1 = 5 * 5 * 7 * 79.
a(3) = 32769 = (2^15)*(3^0)+1 = 3 * 3 * 11 * 331.
a(4) = 59050 = (2^0)*(3^10)+1 = 2 * 5 * 5 * 1181.
a(10) = 279937 = (2^7)*(3^7)+1 = 7 * 7 * 29 * 197 (lots of sevens).
a(24) = 33554433 = (2^25)*(3^0) = 3 * 11 * 251 * 4051.
a(60) = 31381059610 = (2^0)*(3^22)+1 = 2 * 5 * 5501 * 570461.
a(168) = 16677181699666570 = (2^0)*(3^34)+1 = 2 * 5 * 956353 * 1743831169.
		

Crossrefs

Intersection of A014613 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    is(n)=bigomega(n)==4 && n-1 == 2^valuation(n-1,2)*3^valuation(n-1,3) \\ Charles R Greathouse IV, Feb 01 2017
    
  • PARI
    list(lim)=my(v=List(),L=lim\1-1); for(e=0,logint(L,3), my(t=3^e); while(t<=L, if(bigomega(t+1)==4, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Extended by Ray Chandler, Nov 08 2005
Name edited by Charles R Greathouse IV, Feb 01 2017

A113739 Pierpont 7-almost primes. 7-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

339738625, 10460353204, 83682825625, 669462604993, 2641807540225, 3761479876609, 7625597484988, 18075490334785, 35184372088833, 481469424205825, 488038239039169, 570630428688385, 1125899906842625
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 339738625 = (2^22)*(3^4)+1 = 5 * 5 * 5 * 17 * 29 * 37 * 149.
a(2) = 10460353204 = (2^0)*(3^21)+1 = 2 * 2 * 7 * 7 * 43 * 547 * 2269.
a(3) = 83682825625 = (2^3)*(3^21)+1 = 5 * 5 * 5 * 5 * 7 * 631 * 30313.
a(4) = 669462604993 = (2^6)*(3^21)+1 = 7 * 13 * 19 * 31 * 67 * 277 * 673.
a(7) = 7625597484988 = (2^0)*(3^27)+1 = 2 * 2 * 7 * 19 * 37 * 19441 * 19927.
a(9) = 35184372088833 = (2^45)*(3^0)+1 = 3 * 3 * 3 * 11 * 19 * 331 * 18837001.
a(13) = 1125899906842625 = (2^50)*(3^0)+1 = 5 * 5 * 5 * 41 * 101 * 8101 * 268501.
a(16) = 5559060566555524 = (2^0)*(3^33)+1 = 2 * 2 * 7 * 67 * 661 * 25411 * 176419.
a(28) = 9223372036854775809 = (2^63)*(3^0)+1 = 3 * 3 * 3 * 19 * 43 * 5419 * 77158673929.
		

Crossrefs

Intersection of A046308 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==7, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 7.

Extensions

Extended by Ray Chandler, Nov 08 2005

A113740 Pierpont 8-almost primes. 8-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

1999004627104432129, 4052555153018976268, 8754997675608244225, 9606056659007943745, 11832592569282330625, 22769912080611422209, 68309736241834266625, 354577405862133891073, 12449449430074295092225
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 1999004627104432129 = (2^18)*(3^27)+1 = 7 * 13 * 19 * 109 * 127 * 181 * 6949 * 66403.
a(2) = 4052555153018976268 = (2^0)*(3^39)+1 = 2 * 2 * 7 * 79 * 157 * 2887 * 10141 * 398581.
a(3) = 8754997675608244225 = (2^55)*(3^5)+1 = 5 * 5 * 11 * 11 * 1201 * 1229 * 16451 * 119191.
a(4) = 9606056659007943745 = (2^6)*(3^36)+1 = 5 * 13 * 17 * 89 * 109 * 281 * 18793 * 169693.
a(13) = 717897987691852588770250 = (2^0)*(3^50)+1 = 2 * 5 * 5 * 5 * 101 * 1181 * 394201 * 61070817601.
a(29) = 1570042899082081611640534564 = (2^0)*(3^57)+1 = 2 * 2 * 7 * 2851 * 3079 * 53923 * 101917 * 1162320517.
		

Crossrefs

Intersection of A046310 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==8, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 8.

Extensions

Extended by Ray Chandler, Nov 08 2005

A113741 Pierpont 9-almost primes. 9-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

1601009443167990625, 1897492673384285185, 39346408075296537575425, 46005119909369701466113, 221073919720733357899777, 2153693963075557766310748, 3925770232266214525108225
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 1601009443167990625 = (2^5)*(3^35)+1 = 5 * 5 * 5 * 5 * 5 * 7 * 11 * 241 * 27608073601.
a(2) = 1897492673384285185 = (2^10)*(3^32)+1 = 5 * 13 * 13 * 13 * 41 * 41 * 373 * 2357 * 116881.
		

Crossrefs

Intersection of A046312 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==9, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 02 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 9.

Extensions

Extended by Ray Chandler, Nov 08 2005

A111345 Pierpont 5-almost primes. 5-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

4375, 19684, 7077889, 7962625, 34012225, 100663297, 129140164, 452984833, 459165025, 544195585, 644972545, 918330049, 5159780353, 7346640385, 8589934593, 13947137605, 14495514625, 23219011585, 27518828545, 28991029249
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 4375 = (2^1)*(3^7)+1 = 5 * 5 * 5 * 5 * 7.
a(2) = 19684 = (2^0)*(3^9)+1 = 2 * 2 * 7 * 19 * 37.
a(3) = 7077889 = (2^18)*(3^3)+1 = 7 * 13 * 13 * 31 * 193 (prime factors each have all odd digits).
a(4) = 7962625 = (2^15)*(3^5)+1 = 5 * 5 * 5 * 11 * 5791 (again, coincidentally, prime factors each have all odd
digits).
a(7) = 129140164 = (2^0)*(3^17)+1 = 2 * 2 * 103 * 307 * 1021.
a(15) = 8589934593 = (2^33)*(3^0)+1 = 3 * 3 * 67 * 683 * 20857.
a(21) = 34359738369 = (2^35)*(3^0)+1 = 3 * 11 * 43 * 281 * 86171.
a(30) = 793437161473 = (2^11)*(3^18)+1 = 11 * 11 * 11 * 43 * 13863281.
a(32) = 847288609444 = (2^0)*(3^25)+1 = 2 * 2 * 61 * 151 * 22996651.
a(47) = 68630377364884 = (2^0)*(3^29)+1 = 2 * 2 * 523 * 6091 * 5385997.
a(48) = 70368744177665 = (2^46)*(3^0)+1 = 5 * 277 * 1013 * 1657 * 30269.
a(81) = 50031545098999708 = (2^0)*(3^35)+1 = 2 * 2 * 61 * 547 * 374857981681.
a(89) = 144115188075855873 = (2^57)*(3^0)+1 = 3 * 3 * 571 * 174763 * 160465489.
a(99) = 450283905890997364 = (2^0)*(3^37)+1 = 2 * 2 * 18427 * 107671 * 56737873.
a(113) = 4611686018427387905 = (2^62)*(3^0)+1 = 5 * 5581 * 8681 * 49477 * 384773.
		

Crossrefs

Intersection of A014614 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==5, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 5.

Extensions

Extended by Ray Chandler, Nov 08 2005

A111346 Pierpont 6-almost primes. 6-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

14348908, 134217729, 1073741825, 139314069505, 231928233985, 264479053825, 282429536482, 618475290625, 705277476865, 3570467226625, 4398046511105, 8349416423425, 21134460321793, 35664401793025, 91507169819845
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 14348908 = (2^0)*(3^15)+1 = 2 * 2 * 7 * 31 * 61 * 271.
a(2) = 134217729 = (2^27)*(3^0)+1 = 3 * 3 * 3 * 3 * 19 * 87211.
a(3) = 1073741825 = (2^30)*(3^0)+1 = 5 * 5 * 13 * 41 * 61 * 1321.
a(4) = 139314069505 = (2^18)*(3^12)+1 = 5 * 13 * 17 * 61 * 337 * 6133.
a(100) = 151115727451828646838273 = (2^77)*(3^0)+1 = 3 * 43 * 617 * 683 * 78233 * 35532364099.
a(127) = 9671406556917033397649409 = (2^83)*(3^0)+1 = 3 * 499 * 1163 * 2657 * 155377 * 13455809771.
a(153) = 523347633027360537213511522 = (2^0)*(3^56)+1 = 2 * 17 * 113 * 193 * 19489 * 36214795668330833.
a(169) = 2475880078570760549798248449 = (2^91)*(3^0)+1 = 3 * 43 * 2731 * 224771 * 1210483 * 25829691707.
		

Crossrefs

Intersection of A046306 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==6, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 6.

Extensions

Extended by Ray Chandler, Nov 08 2005
Showing 1-10 of 14 results. Next