cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A284478 a(n) = A005185(n) - A055748(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 0, 2, 1, 2, 3, 3, 3, 2, 2, 2, 5, 1, -1, 1, 2, 1, 0, 4, 1, 1, 4, 5, 3, 3, 4, 3, 4, 5, 5, 5, 3, 1, 3, 4, 8, -1, -1, 2, 1, 0, 0, 0, -1, 2, 0, 2, 1, 0, 0, 8, 1, -1, 6, 3, 1, 7, 7, 3, 4, 6, 5, 6, 5, 8, 5, 4, 5, 7, 7, 4, 8, 3, 7, 6, 4, 7, 9, 2, 0, 3, 2, 2, 18
Offset: 1

Views

Author

Altug Alkan, Mar 27 2017

Keywords

Examples

			a(4) = 1 because a(4) = A005185(4) - A055748(4) = 3 - 2 = 1.
		

Crossrefs

Programs

  • Maple
    A005185:= proc(n) option remember; procname(n-procname(n-1)) +procname(n-procname(n-2)) end proc:
    A005185(1):= 1: A005185(2):= 1:
    A055748:= proc(n) option remember; procname(procname(n-1)) +procname(n-procname(n-2)-1) end proc:
    A055748(1):= 1: A055748(2):= 1:
    A284478:= map(A005185 - A055748, [$1..1000]):
    A284478:= seq(A284478[i], i=1..1000); # Altug Alkan, Apr 01 2017
  • Mathematica
    a[n_] := a[n] = If[n < 3, 1, a[n - a[n - 1]] + a[n - a[n - 2]]]; b[n_] := b[n] = If[n < 3, 1, b[b[n - 1]] + b[n - b[n - 2] - 1]]; Array[a[#] - b[#] &, 96] (* Michael De Vlieger, Mar 29 2017 *)
  • PARI
    q=vector(1000); c=vector(1000); q[1]=q[2]=1; for(n=3, #q, q[n]=(q[n-q[n-1]]+q[n-q[n-2]])); c[1]=c[2]=1; for(n=3, #c, c[n]=(c[c[n-1]]+c[n-c[n-2]-1])); va = vector(1000, n, q[n]-c[n])

A004001 Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 27, 27, 28, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42
Offset: 1

Views

Author

Keywords

Comments

On Jul 15 1988 during a colloquium talk at Bell Labs, John Conway stated that he could prove that a(n)/n -> 1/2 as n approached infinity, but that the proof was extremely difficult. He therefore offered $100 to someone who could find an n_0 such that for all n >= n_0, we have |a(n)/n - 1/2| < 0.05, and he offered $10,000 for the least such n_0. I took notes (a scan of my notebook pages appears below), plus the talk - like all Bell Labs Colloquia at that time - was recorded on video. John said afterwards that he meant to say $1000, but in fact he said $10,000. I was in the front row. The prize was claimed by Colin Mallows, who agreed not to cash the check. - N. J. A. Sloane, Oct 21 2015
a(n) - a(n-1) = 0 or 1 (see the D. Newman reference). - Emeric Deutsch, Jun 06 2005
a(A188163(n)) = n and a(m) < n for m < A188163(n). - Reinhard Zumkeller, Jun 03 2011
From Daniel Forgues, Oct 04 2019: (Start)
Conjectures:
a(n) = n/2 iff n = 2^k, k >= 1.
a(n) = 2^(k-1): k times, for n = 2^k - (k-1) to 2^k, k >= 1. (End)

Examples

			If n=4, 2^4=16, a(16-i) = 2^(4-1) = 8 for 0 <= i <= 4-1 = 3, hence a(16)=a(15)=a(14)=a(13)=8.
		

References

  • J. Arkin, D. C. Arney, L. S. Dewald and W. E. Ebel, Jr., Families of recursive sequences, J. Rec. Math., 22 (No. 22, 1990), 85-94.
  • B. W. Conolly, Meta-Fibonacci sequences, in S. Vajda, editor, "Fibonacci and Lucas Numbers and the Golden Section", Halstead Press, NY, 1989, pp. 127-138.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. E31.
  • D. R. Hofstadter, personal communication.
  • C. A. Pickover, Wonders of Numbers, "Cards, Frogs and Fractal sequences", Chapter 96, pp. 217-221, Oxford Univ. Press, NY, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

Cf. A005229, A005185, A080677, A088359, A087686, A093879 (first differences), A265332, A266341, A055748 (a chaotic cousin), A188163 (greedy inverse).
Cf. A004074 (A249071), A005350, A005707, A093878. Different from A086841. Run lengths give A051135.
Cf. also permutations A267111-A267112 and arrays A265901, A265903.

Programs

  • Haskell
    a004001 n = a004001_list !! (n-1)
    a004001_list = 1 : 1 : h 3 1  {- memoization -}
      where h n x = x' : h (n + 1) x'
              where x' = a004001 x + a004001 (n - x)
    -- Reinhard Zumkeller, Jun 03 2011
    
  • Magma
    [n le 2 select 1 else Self(Self(n-1))+ Self(n-Self(n-1)):n in [1..75]]; // Marius A. Burtea, Aug 16 2019
    
  • Maple
    A004001 := proc(n) option remember; if n<=2 then 1 else procname(procname(n-1)) +procname(n-procname(n-1)); fi; end;
  • Mathematica
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; Table[ a[n], {n, 1, 75}] (* Robert G. Wilson v *)
  • PARI
    a=vector(100);a[1]=a[2]=1;for(n=3,#a,a[n]=a[a[n-1]]+a[n-a[n-1]]);a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    first(n)=my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); v \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    def a004001(n):
        A = {1: 1, 2: 1}
        c = 1 #counter
        while n not in A.keys():
            if c not in A.keys():
                A[c] = A[A[c-1]] + A[c-A[c-1]]
            c += 1
        return A[n]
    # Edward Minnix III, Nov 02 2015
    
  • SageMath
    @CachedFunction
    def a(n): # a = A004001
        if n<3: return 1
        else: return a(a(n-1)) + a(n-a(n-1))
    [a(n) for n in range(1,101)] # G. C. Greubel, Apr 25 2024
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example from: http://oeis.org/wiki/Memoization
    (definec (A004001 n) (if (<= n 2) 1 (+ (A004001 (A004001 (- n 1))) (A004001 (- n (A004001 (- n 1)))))))
    ;; Antti Karttunen, Oct 22 2014
    

Formula

Limit_{n->infinity} a(n)/n = 1/2 and as special cases, if n > 0, a(2^n-i) = 2^(n-1) for 0 <= i < = n-1; a(2^n+1) = 2^(n-1) + 1. - Benoit Cloitre, Aug 04 2002 [Corrected by Altug Alkan, Apr 03 2017]

A284523 a(1) = a(2) = 1, a(3) = 2; a(n) = a(a(n-1)-1) + a(n-a(n-3)-1) for n > 3.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 8, 8, 8, 8, 8, 8, 8, 8, 9, 11, 13, 13, 13, 11, 13, 13, 13, 13, 13, 13, 13, 13, 14, 16, 19, 21, 19, 16, 14, 16, 17, 21, 21, 21, 21, 19, 21, 21, 21, 21, 21, 21, 21, 21, 22, 24, 27, 32, 29, 26, 24, 21, 29, 27, 34, 34, 27, 27, 29, 34, 34, 34, 29, 27, 29, 32
Offset: 1

Views

Author

Altug Alkan and Robert Israel, Mar 28 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
    procname(procname(n-1)-1) + procname(n-procname(n-3)-1)
    end proc:
    a(1):= 1: a(2):= 1: a(3):= 2:
    map(a, [$1..100]);
  • Mathematica
    a[1] = a[2] = 1; a[3] = 2; a[n_] := a[n] = a[a[n - 1] - 1] + a[n - a[n - 3] - 1]; Array[a, 81] (* Michael De Vlieger, Mar 28 2017 *)

A284397 a(1) = 1, a(2) = 2; a(n) is the largest prime <= (a(a(n-1)) + a(n-a(n-2)-1)) for n > 2.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 13, 17, 17, 13, 13, 13, 17, 17, 13, 13, 17, 17, 17, 17, 17, 17, 17, 17, 19, 23, 19, 17, 23, 19, 19, 19, 23, 23, 19, 19, 23, 23, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23
Offset: 1

Views

Author

Altug Alkan, Mar 26 2017

Keywords

Examples

			a(6) = 5 because a(a(5)) + a(6 - a(4) - 1) = a(3) + a(2) = 3 + 2 = 5 and A007917(5) = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= If[n<3, n, Prime@ PrimePi[a[a[n - 1]] + a[n - a[n - 2] - 1]]]; Table[a[n],{n, 1, 50}] (* Indranil Ghosh, Mar 26 2017 *)
  • PARI
    a=vector(1000); a[1]=1;a[2]=2; for(n=3, #a, a[n] = precprime(a[a[n-1]]+a[n-a[n-2]-1])); a

Formula

a(1) = 1, a(2) = 2; a(n) = A007917(a(a(n-1)) + a(n-a(n-2)-1)) for n > 2.

A284511 a(1) = 1, a(2) = 2, a(3) = 2; a(n) = a(a(n-1)-1) + a(n-a(n-2)) for n > 3.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 5, 7, 8, 7, 7, 8, 8, 8, 9, 12, 14, 12, 11, 15, 15, 13, 14, 15, 15, 15, 16, 16, 16, 16, 17, 21, 23, 23, 23, 23, 23, 24, 25, 26, 27, 27, 27, 29, 28, 29, 27, 26, 28, 30, 30, 29, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 38, 44, 43, 41, 40, 40, 40, 41, 46, 50
Offset: 1

Views

Author

Altug Alkan, Mar 28 2017

Keywords

Examples

			a(4) = 3 because a(4) = a(a(3) - 1) + a(4 - a(2)) = a(1) + a(2) = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
      procname(procname(n-1)-1)+procname(n-procname(n-2))
    end proc:
    a(1):= 1: a(2):= 2: a(3):= 2:
    map(a, [$1..100]); # Robert Israel, Mar 28 2017
  • Mathematica
    a[1]=1; a[2]=a[3]=2; a[n_] := a[n] = a[a[n-1]-1] + a[n-a[n-2]]; Array[a, 74] (* Giovanni Resta, Mar 28 2017 *)
  • PARI
    a=vector(1000); a[1]=1; a[2]=a[3]=2; for(n=4, #a, a[n]=a[a[n-1]-1]+a[n-a[n-2]]); a
    
  • Sage
    @CachedFunction
    def a(n): # A284511
        if (n<4): return 2 - bool(n==1)
        else: return  a(a(n-1)-1) + a(n-a(n-2))
    [a(n) for n in (1..80)] # G. C. Greubel, Mar 28 2022

Formula

a(n) = a(a(n-1)-1) + a(n-a(n-2)), with a(1) = 1, a(2) = 2, a(3) = 2.

A087816 a(n) = a(a(n-1)) + a(n - 1 - a(n-1)) with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 20, 21, 21, 21, 22, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 34, 34, 34
Offset: 1

Views

Author

Roger L. Bagula, Oct 05 2003

Keywords

Crossrefs

Programs

  • Maple
    A087816 := proc(n) option remember; if n <= 2 then 1 else procname(procname(n-1)) + procname(n - 1 - procname(n-1)); fi; end;
    seq(A087816(n), n = 1..100); # Peter Bala, Sep 11 2022
  • Mathematica
    hg[n_Integer?Positive] := hg[n] =hg[hg[n-1]] + hg[n -1- hg[n-1]] hg[1] = hg[2] = 1 digits=2^8 a=Table[hg[n], {n, 1, digits}]

Formula

From Peter Bala, Sep 11 2022: (Start)
a(n) = n + 1 - A004001(n+1).
a(n) = A080677(n+1) - 1.
a(n+1) - a(n) = 0 or 1. (End)

A285507 a(1) = a(2) = 1, a(3) = a(4) = 2; a(n) = a(a(n-2)-1) + a(n-a(n-3)-1) for n > 4.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 8, 8, 8, 8, 8, 8, 8, 9, 9, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 16, 16, 17, 17, 17, 17, 18, 18, 21, 21, 21, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 24, 24, 24, 24, 24, 25, 25, 26, 26, 26, 26, 27, 27, 32, 32, 34, 30, 31, 29, 34, 33, 34, 34, 33, 33, 34, 34
Offset: 1

Views

Author

Altug Alkan, Apr 20 2017

Keywords

Examples

			a(5) = 3 because a(5) = a(a(3)-1) + a(5-a(2)-1) = a(1) + a(3) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[1]=a[2]=1; a[3]=a[4]=2; a[n_] := a[n] = a[a[n-2]-1] + a[n-a[n-3]-1]; Array[a, 88] (* Giovanni Resta, Apr 21 2017 *)
  • PARI
    a=vector(10000); a[1]=a[2]=1; a[3]=a[4]=2; for(n=5, #a, a[n]=a[a[n-2]-1]+a[n-a[n-3]-1]); va = vector(10000, n, a[n])

A087815 Terms in A087816 that occur in a run of length more than 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 12, 16, 17, 18, 19, 21, 22, 24, 27, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 48, 49, 51, 54, 58, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 102, 106, 107, 109, 112, 116, 121, 128
Offset: 1

Views

Author

Roger L. Bagula, Oct 05 2003

Keywords

Crossrefs

Programs

  • Mathematica
    hg[n_Integer?Positive] := hg[n] =hg[hg[n-1]] + hg[n -1- hg[n-1]] hg[1] = hg[2] = 1 digits=2^8 a=Table[hg[n], {n, 1, digits}] b=Table[If[a[[n]]-a[[n-1]]==0, a[[n]], 0], {n, 2, digits}]; c=Delete[Union[b], 1]

A284520 a(1) = 1, a(2) = a(3) = a(4) = 2; a(n) = a(a(n-1)-1) + a(n-a(n-3)-1) for n > 4.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 19, 19, 19, 20, 22, 25, 28, 28, 26, 24, 23, 25, 29, 30, 31, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 35, 35
Offset: 1

Views

Author

Altug Alkan, Mar 28 2017

Keywords

Examples

			a(5) = 3 because a(5) = a(a(4)-1) + a(5-a(2)-1) = a(1) + a(2) = 3.
		

Crossrefs

Programs

  • PARI
    a=vector(1000); a[1]=1; a[2]=a[3]=a[4]=2; for(n=5, #a, a[n]=a[a[n-1]-1]+ a[n-a[n-3]-1]); a

A285509 a(1) = 1; a(2) = a(3) = a(4) = 2; a(n) = a(a(n-1)-1) + a(n-a(n-3)) for n > 4.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 5, 5, 5, 5, 6, 8, 10, 10, 10, 9, 10, 10, 10, 10, 11, 13, 18, 20, 18, 15, 15, 15, 20, 20, 19, 18, 20, 20, 20, 19, 20, 20, 20, 20, 21, 23, 31, 38, 33, 28, 20, 20, 21, 30, 39, 39, 38, 30, 29, 25, 35, 40, 40, 38, 31, 33, 36, 40, 38, 40, 35, 40, 40, 40, 39, 38, 40, 40, 40, 39, 40, 40, 40, 40, 41, 43, 54, 69
Offset: 1

Views

Author

Altug Alkan, Apr 20 2017

Keywords

Comments

Although sequence is unpredictable with its complex growth characteristic and generational structure, it has various signs of order and there are many temporary and simple patterns on it. For example, values of a(n) such that a(n) = a(n + 1) = a(n + 2) = a(n + 3) are 5, 10, 20, 40, 80, 160, 320, 640, 1280, ...

Examples

			a(5) = 3 because a(5) = a(a(4)-1) + a(5-a(2)) = a(1) + a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[2]=a[3]=a[4]=2; a[n_] := a[n] = a[a[n-1]-1] + a[n-a[n-3]]; Array[a, 84] (* Giovanni Resta, Apr 21 2017 *)
  • PARI
    a=vector(10000); a[1]=1;a[2]=a[3]=a[4]=2; for(n=5, #a, a[n]=a[a[n-1]-1]+a[n-a[n-3]]); va = vector(10000, n, a[n])
Showing 1-10 of 15 results. Next