cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A232100 a(n) = the position of A232099(n) in A055926.

Original entry on oeis.org

41, 123, 205, 287, 369, 451, 533, 615, 697, 779, 861, 943, 1025, 1107, 1189, 1271, 1353, 1435, 1517, 1599, 1681, 1763, 1845, 1927, 2009, 2091, 2173, 2255, 2337, 2419, 2501, 2583, 2665, 2706, 2747, 2829, 2911, 2993, 3075, 3157, 3239, 3321, 3403, 3485, 3567, 3649
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

In range n=1..2215, each a(n) is a multiple of 41, with a(2215) = 177079 = 4319*41. In that range, all 2160 odd multiples 1, 3, 5, ..., 4319*41 occur, but only 55 even multiples, with a(34) = 66*41 = 2706 being the first one of them. The multipliers for even terms in that range seems to be given by 66*A047253(1..55) from 66*1 up to 66*A047253(55) = 66*65 = 4290. (Where A047253 gives the numbers not divisible by six).

Crossrefs

Formula

A055926(a(n)) = A232099(n) for all n.

A055874 a(n) = largest m such that 1, 2, ..., m divide n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Leroy Quet, Jul 16 2000

Keywords

Comments

From Antti Karttunen, Nov 20 2013 & Jan 26 2014: (Start)
Differs from A232098 for the first time at n=840, where a(840)=8, while A232098(840)=7. A232099 gives all the differing positions. See also the comments at A055926 and A232099.
The positions where a(n) is an odd prime is given by A017593 up to A017593(34)=414 (so far all 3's), after which comes the first 7 at a(420). (A017593 gives the positions of 3's.)
(Continued on Jan 26 2014):
Only terms of A181062 occur as values.
A235921 gives such n where a(n^2) (= A235918(n)) differs from A071222(n-1) (= A053669(n)-1). (End)
a(n) is the largest m such that A003418(m) divides n. - David W. Wilson, Nov 20 2014
a(n) is the largest number of consecutive integers dividing n. - David W. Wilson, Nov 20 2014
A051451 gives indices where record values occur. - Gionata Neri, Oct 17 2015
Yuri Matiyasevich calls this the maximum inheritable divisor of n. - N. J. A. Sloane, Dec 14 2023

Examples

			a(12) = 4 because 1, 2, 3, 4 divide 12, but 5 does not.
		

Crossrefs

Programs

  • Haskell
    a055874 n = length $ takeWhile ((== 0) . (mod n)) [1..]
    -- Reinhard Zumkeller, Feb 21 2012, Dec 09 2010
    
  • Maple
    N:= 1000: # to get a(1) to a(N)
    A:= Vector(N,1);
    for m from 2 do
      Lm:= ilcm($1..m);
      if Lm > N then break fi;
      if Lm mod (m+1) = 0 then next fi;
      for k from 1 to floor(N/Lm) do
        A[k*Lm]:=m
      od
    od:
    convert(A,list); # Robert Israel, Nov 28 2014
  • Mathematica
    a[n_] := Module[{m = 1}, While[Divisible[n, m++]]; m - 2]; Array[a, 100] (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    a(n) = my(m = 1); while ((n % m) == 0, m++); m - 1; \\ Michel Marcus, Jan 17 2014
    
  • Python
    from itertools import count
    def A055874(n):
        for m in count(1):
            if n % m:
                return m-1 # Chai Wah Wu, Jan 02 2022
  • Scheme
    (define (A055874 n) (let loop ((m 1)) (if (not (zero? (modulo n m))) (- m 1) (loop (+ 1 m))))) ;; Antti Karttunen, Nov 18 2013
    

Formula

a(n) = A007978(n) - 1. - Antti Karttunen, Jan 26 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A064859 (Farhi, 2009). - Amiram Eldar, Jul 25 2022

A055881 a(n) = largest m such that m! divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet and Labos Elemer, Jul 16 2000

Keywords

Comments

Number of factorial divisors of n. - Amarnath Murthy, Oct 19 2002
The sequence may be constructed as follows. Step 1: start with 1, concatenate and add +1 to last term gives: 1,2. Step 2: 2 is the last term so concatenate twice those terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3 we get 6 terms. Step 3: 3 is the last term, concatenate 3 times those 6 terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, iterates. At k-th step we obtain (k+1)! terms. - Benoit Cloitre, Mar 11 2003
From Benoit Cloitre, Aug 17 2007, edited by M. F. Hasler, Jun 28 2016: (Start)
Another way to construct the sequence: start from an infinite series of 1's:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Replace every second 1 by a 2 giving:
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... Replace every third 2 by a 3 giving:
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, ... Replace every fourth 3 by a 4 etc. (End)
This sequence is the fixed point, starting with 1, of the morphism m, where m(1) = 1, 2, and for k > 1, m(k) is the concatenation of m(k - 1), the sequence up to the first k, and k + 1. Thus m(2) = 1, 2, 1, 3; m(3) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4; m(4) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, etc. - Franklin T. Adams-Watters, Jun 10 2009
All permutations of n elements can be listed as follows: Start with the (arbitrary) permutation P(0), and to obtain P(n + 1), reverse the first a(n) + 1 elements in P(n). The last permutation is the reversal of the first, so the path is a cycle in the underlying graph. See example and fxtbook link. - Joerg Arndt, Jul 16 2011
Positions of rightmost change with incrementing rising factorial numbers, see example. - Joerg Arndt, Dec 15 2012
Records appear at factorials. - Robert G. Wilson v, Dec 21 2012
One more than the number of trailing zeros (A230403(n)) in the factorial base representation of n (A007623(n)). - Antti Karttunen, Nov 18 2013
A062356(n) and a(n) coincide quite often. - R. J. Cano, Aug 04 2014
For n>0 and 1<=j<=(n+1)!-1, (n+1)^2-1=A005563(n) is the number of times that a(j)=n-1. - R. J. Cano, Dec 23 2016

Examples

			a(12) = 3 because 3! is highest factorial to divide 12.
From _Joerg Arndt_, Jul 16 2011: (Start)
All permutations of 4 elements via prefix reversals:
   n:   permutation  a(n)+1
   0:   [ 0 1 2 3 ]  -
   1:   [ 1 0 2 3 ]  2
   2:   [ 2 0 1 3 ]  3
   3:   [ 0 2 1 3 ]  2
   4:   [ 1 2 0 3 ]  3
   5:   [ 2 1 0 3 ]  2
   6:   [ 3 0 1 2 ]  4
   7:   [ 0 3 1 2 ]  2
   8:   [ 1 3 0 2 ]  3
   9:   [ 3 1 0 2 ]  2
  10:   [ 0 1 3 2 ]  3
  11:   [ 1 0 3 2 ]  2
  12:   [ 2 3 0 1 ]  4
  13:   [ 3 2 0 1 ]  2
  14:   [ 0 2 3 1 ]  3
  15:   [ 2 0 3 1 ]  2
  16:   [ 3 0 2 1 ]  3
  17:   [ 0 3 2 1 ]  2
  18:   [ 1 2 3 0 ]  4
  19:   [ 2 1 3 0 ]  2
  20:   [ 3 1 2 0 ]  3
  21:   [ 1 3 2 0 ]  2
  22:   [ 2 3 1 0 ]  3
  23:   [ 3 2 1 0 ]  2
(End)
From _Joerg Arndt_, Dec 15 2012: (Start)
The first few rising factorial numbers (dots for zeros) with 4 digits and the positions of the rightmost change with incrementing are:
  [ 0]    [ . . . . ]   -
  [ 1]    [ 1 . . . ]   1
  [ 2]    [ . 1 . . ]   2
  [ 3]    [ 1 1 . . ]   1
  [ 4]    [ . 2 . . ]   2
  [ 5]    [ 1 2 . . ]   1
  [ 6]    [ . . 1 . ]   3
  [ 7]    [ 1 . 1 . ]   1
  [ 8]    [ . 1 1 . ]   2
  [ 9]    [ 1 1 1 . ]   1
  [10]    [ . 2 1 . ]   2
  [11]    [ 1 2 1 . ]   1
  [12]    [ . . 2 . ]   3
  [13]    [ 1 . 2 . ]   1
  [14]    [ . 1 2 . ]   2
  [15]    [ 1 1 2 . ]   1
  [16]    [ . 2 2 . ]   2
  [17]    [ 1 2 2 . ]   1
  [18]    [ . . 3 . ]   3
  [19]    [ 1 . 3 . ]   1
  [20]    [ . 1 3 . ]   2
  [21]    [ 1 1 3 . ]   1
  [22]    [ . 2 3 . ]   2
  [23]    [ 1 2 3 . ]   1
  [24]    [ . . . 1 ]   4
  [25]    [ 1 . . 1 ]   1
  [26]    [ . 1 . 1 ]   2
(End)
		

Crossrefs

This sequence occurs also in the next to middle diagonals of A230415 and as the second rightmost column of triangle A230417.
Other sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.
Analogous sequence for binary (base-2) representation: A001511.

Programs

  • Mathematica
    Table[Length[Intersection[Divisors[n], Range[5]!]], {n, 125}] (* Alonso del Arte, Dec 10 2012 *)
    f[n_] := Block[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 21 2012 *)
  • PARI
    See Cano link.
    
  • PARI
    n=5; f=n!; x='x+O('x^f); Vec(sum(k=1,n,x^(k!)/(1-x^(k!)))) \\ Joerg Arndt, Jan 28 2014
    
  • PARI
    a(n)=for(k=2,n+1,if(n%k, return(k-1),n/=k)) \\ Charles R Greathouse IV, May 28 2015
  • Scheme
    (define (A055881 n) (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 1)) (else (loop (/ n i) (+ 1 i))))))
    

Formula

G.f.: Sum_{k > 0} x^(k!)/(1 - x^(k!)). - Vladeta Jovovic, Dec 13 2002
a(n) = A230403(n)+1. - Antti Karttunen, Nov 18 2013
a(n) = A230415(n-1,n) = A230415(n,n-1) = A230417(n,n-1). - Antti Karttunen, Nov 19 2013
a(m!+n) = a(n) if 1 <= n <= m*m! - 1 = A001563(m) - 1. - R. J. Cano, Jun 27 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = e - 1 (A091131). - Amiram Eldar, Jul 23 2022

A232098 a(n) is the largest m such that m! divides n^2; a(n) = A055881(n^2).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

For all n, A055881(n) <= a(n), and probably also a(n) <= A055874(n).
Moreover, a(n) > A055881(n) if and only if A055874(n) > A055881(n), thus A055926 gives (also) all the positions where this sequence differs from A055881. Please see Comments section in A055926 for the proof.
Differs from A055874 for the first time at n=840, where a(840)=7, while A055874(840)=8. A232099 gives all the positions where such differences occur.

Crossrefs

Programs

  • Mathematica
    Module[{nn=10,fct},fct=Table[{f,f!},{f,nn}];Table[Select[fct,Mod[n^2,#[[2]]]==0&][[-1,1]],{n,90}]] (* Harvey P. Dale, Aug 11 2024 *)
  • Scheme
    (define (A232098 n) (A055881 (A000290 n)))

Formula

a(n) = A055881(A000290(n)) = A055881(n^2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A065887(k) = 1.78672776922161809767... . - Amiram Eldar, Jan 01 2024

A232741 Numbers n for which the largest m such that (m-1)! divides n is a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2013

Keywords

Comments

Numbers n for which A055881(n) is one of the terms of A006093.
Equally: Numbers n for which {the number of the trailing zeros in their factorial base representation A007623(n)} + 2 is a prime.
The sequence can be described in the following manner: Sequence includes all multiples of 1! and 2! (odd and even numbers), except that it excludes from those the multiples of 3! (6), except that it includes the multiples of 4! (24), except that it excludes the multiples of 5! (120), except that it includes the multiples of 6! (720), except that it excludes the multiples of 7! (5040) (and also those of 8! and 9!, because here 8+1 = 9 is the first odd composite), except that it includes the multiples of 10!, but excludes the multiples of 11!, but includes the multiples of 12!, but excludes the multiples of 13! (and also of 14! and 15!, because 14-16 are all composites), but includes the multiples of 16!, and so on, ad infinitum.

Crossrefs

A232743 Numbers n for which the largest m such that (m-1)! divides n is a composite number > 5.

Original entry on oeis.org

120, 240, 360, 480, 600, 840, 960, 1080, 1200, 1320, 1560, 1680, 1800, 1920, 2040, 2280, 2400, 2520, 2640, 2760, 3000, 3120, 3240, 3360, 3480, 3720, 3840, 3960, 4080, 4200, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280, 5400, 5520, 5640, 5880, 6000, 6120, 6240
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2013

Keywords

Comments

Numbers n for which A055881(n)>4 and is one of the terms of A072668.
Numbers n for which two plus the number of the trailing zeros in their factorial base representation A007623(n) is a composite number larger than 5.
All terms are multiples of 120. Specifically, these are all those terms of A232742 which are divisible by 120 (or equally: 24).
Please see also the comments in A055926, whose subset this sequence is.

Examples

			120 is included because A055881(120)=5 and 5+1 is a composite number larger than 5. Note that A007623(120) = '10000', with four trailing zeros.
720 is the first missing multiple of 120, as A055881(720)=6 and 7 is a prime, not composite, so 720 is not included in this sequence. Note that A007623(720) = '100000', with five trailing zeros, and 5+2 is not a composite.
120960 (= 3*8!) is included because A055881(120960)=8 and 9 is a composite number larger than 5. Note that A007623(120960) = '30000000', with seven trailing zeros.
		

Crossrefs

Subset of both A232742 and A055926.

A235921 Numbers n such that smallest number not dividing n^2 (A236454) is different from smallest prime not dividing n (A053669).

Original entry on oeis.org

210, 630, 1050, 1470, 1890, 2310, 2730, 3150, 3570, 3990, 4410, 4830, 5250, 5670, 6090, 6510, 6930, 7350, 7770, 8190, 8610, 9030, 9450, 9870, 10290, 10710, 11130, 11550, 11970, 12390, 12810, 13230, 13650, 14070, 14490, 14910, 15330, 15750, 16170, 16590, 17010
Offset: 1

Views

Author

Antti Karttunen and Michel Marcus, Jan 17 2014

Keywords

Comments

Equivalent definition is: numbers n such that {the largest m such that 1, 2, ..., m divide n^2 = A055874(n^2) = A235918(n)} is different from {the smallest k such that gcd(n-1,k) = gcd(n,k+1) = A071222(n-1)}.
All terms are multiples of 210 = 2*3*5*7, the fourth primorial, A002110(4).
The first term which is an even multiple of 210 (i.e., 210 times an even number), is 446185740 = 2124694 * 210 = 2*223092870 = 2*A002110(9) = 2*A034386(23). Note that 23 is the 9th prime, and 223092870 is its primorial. Thus this sequence differs from its subsequence, A236432, "the odd multiples of 210" = (2n-1)*210, for the first time at n = 1062348, where a(n) = 446185740, while A236432(n) = 446185950.
Note that a more comprehensive description for which terms are included is still lacking. Compare for example to the third definition of A055926.
At least we know the following:
If a number is not divisible by 210, then it cannot be a member, as then it is "missing" (i.e., not divisible by) one of those primes, 2, 3, 5 or 7, and thus its square is also "missing" the same prime. In more detail, this follows because:
If the least nondividing prime is 2, then A053669(n) = A236454(n) = 2. If the least nondividing prime is 3, then A053669(n) = A236454(n) = 3.
If the least nondividing prime is 5 (so 2 and 3 are present), then as 2|n and 4|(n^2), we have A053669(n) = A236454(n) = 5.
If the least nondividing prime is 7, but 2, 3 and 5 are present, then we have A053669(n) = A236454(n) = 7.
On the other hand, when n is an odd multiple of 210 (= 2*3*5*7), i.e., (2k+1)*210, so that its prime factorization is of the form 2*3*5*7*{zero or more additional odd prime factors}, then A053669(n) must be at least 11, the next prime after 7, which is certainly different from A236454(n) = A007978(n^2) which must be 8, as then 4 is the highest power of 2 dividing n^2.
In contrast to that, when n is an even multiple of 210, so that its prime factorization is of the form 2*2*3*5*7*{zero or more additional prime factors}, then also all the composites 8, 9, 10, 12, 14, 15, 16, 18 and 20 divide n^2, thus if A053669(n) is any prime from 11 to 19, A236454(n) will return the same result.
However, if n is of the form k*446185740, where k is not a multiple of 3, so that the prime factorization of n is 2*2*3*5*7*11*13*17*19*23*{zero or more additional prime factors, all different from 3}, then A053669(n) must be at least 29 (next prime after 23), but A236454(n) = 27, because then 9 is the highest power of 3 dividing n^2.
The pattern continues indefinitely: If n is of the form (2k+1)*2*3*200560490130, where 200560490130 = A002110(11), so that n has a prime factorization of the form 2*2*3*3*5*7*11*13*17*19*23*29*31*{zero or more additional odd prime factors}, then A053669(n) must be at least 37, while A236454(n) = 32 = 2^5, because then 16 is the highest power of 2 dividing n^2.

Examples

			210 (= 2*3*5*7) is a member, because A053669(210)=11, while A236454(210) = A007978(210*210) = A007978(44100) = 8.
446185740 (= 2*2*3*5*7*11*13*17*19*23) is a member, because A053669(446185740) = 29, while A236454(446185740) = 27, as there is only one 3 present in 446185740, which means that its square is only divisible by 9, but not by 27 = 3^3.
		

Crossrefs

A232099 Numbers n such that {largest m such that 1, 2, ..., m divide n} is different from {largest m such that m! divides n^2}.

Original entry on oeis.org

840, 2520, 4200, 5880, 7560, 9240, 10920, 12600, 14280, 15960, 17640, 19320, 21000, 22680, 24360, 26040, 27720, 29400, 31080, 32760, 34440, 36120, 37800, 39480, 41160, 42840, 44520, 46200, 47880, 49560, 51240, 52920, 54600, 55440, 56280, 57960, 59640, 61320, 63000
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

Numbers n such that A055874(n) differs from A232098(n). (By the definition of the sequence).
This sequence is a subset of A055926. Please see there for a proof. From that follows that A055881(a(n))+1 is always composite (in range n=1..100000, only values 6, 8, 9 and 10 occur).
Also, incidentally, for the first five terms, n=1..5, a(n) = 70*A055926(n), then a(6)=77*A055926(6), and the next time the ratio A232099(n)/A055926(n) is integral is at n=21, where a(n) = 82*A055926(21), at n=41 (a(41) = 79*A055926(41) = 79*840 = 66360), at n=136, a(136) = 80*A055926(136) = 80*2772 = 221760 and at n=1489, where a(1489) = 80*A055926(1489) = 80 * 30492 = 2439360. The ratio seems to converge towards some value a little less than 80. Please see the plot generated by Plot2 in the links section.

Examples

			840 (= 3*5*7*8) is in the sequence as all natural numbers up to 8 divide 840, but the largest factorial that divides its square, 705600, is 7! (840^2 = 140 * 5040), and 7 differs from 8.
		

Crossrefs

Formula

For all n, a(n) = A055926(A232100(n)). [Follows from the definition of A232100, but cannot as such be used to compute the sequence. Use the given Scheme-program instead.]

A232742 Numbers n for which the largest m such that (m-1)! divides n is a composite.

Original entry on oeis.org

6, 12, 18, 30, 36, 42, 54, 60, 66, 78, 84, 90, 102, 108, 114, 120, 126, 132, 138, 150, 156, 162, 174, 180, 186, 198, 204, 210, 222, 228, 234, 240, 246, 252, 258, 270, 276, 282, 294, 300, 306, 318, 324, 330, 342, 348, 354, 360, 366, 372, 378, 390, 396, 402, 414
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2013

Keywords

Comments

Numbers n for which A055881(n) is one of the terms of A072668.
Equally: numbers n for which {the number of the trailing zeros in their factorial base representation A007623(n)} + 2 is a composite number.
All terms are divisible by 6.
The sequence can be described in the following manner: Sequence includes all multiples of 3!, except that it excludes from those the multiples of 4! (24), except that it includes the multiples of 5! (120), except that it excludes the multiples of 6! (720), except that it includes the multiples of 7! (5040) (and also those of 8! and 9!, because here 8+1 = 9 is the first odd composite), of which it however excludes the multiples of 10!, except that it includes the multiples of 11!, but excludes the multiples of 12!, but includes the multiples of 13! (and 14! and 15!, because 14-16 are all composites), but excludes the multiples of 16!, and so on, ad infinitum.

Examples

			6 is included because A055881(6)=3 and 3+1 is a composite number.
24 is the first excluded multiple of 6, as A055881(24)=4 and 5 is a prime, not composite, so 24 is not included in this sequence.
120 is the first included multiple of 24, as A055881(120)=5 and 6 is a composite.
		

Crossrefs

Complement: A232741. Subset: A232743.

A235918 Largest m such that 1, 2, ..., m divide n^2.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Michel Marcus, Jan 17 2014

Keywords

Comments

Note that a(n) is equal to A071222(n-1) = A053669(n)-1 for the first 209 values of n. The first difference occurs at n=210, where a(210)=7, while A071222(209)=10. A235921 lists all n where a(n) differs from A071222(n-1). (Note also that a(n) is equal to A071222(n+29) for n=1..179.) - [Comment revised by Antti Karttunen, Jan 26 2014 because of the changed definition of A235921 and newly inserted a(0)=1 term of A071222.]
See A055874 for a similar comment concerning the difference between A055874 and A232098.
Average value is 1.9124064... = sum_{n>=1} 1/A019554(A003418(n)). - Charles R Greathouse IV, Jan 24 2014

Crossrefs

One less than A236454.

Programs

  • Mathematica
    a[n_] := Module[{m = 1}, While[Divisible[n^2, m++]]; m - 2]; Array[a, 100] (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    a(n) = my(m = 1); while ((n^2 % m) == 0, m++); m - 1; \\ Michel Marcus, Jan 17 2014

Formula

a(n) = A055874(n^2).
a(n) = A236454(n)-1.
Showing 1-10 of 11 results. Next