cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A249151 Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

A000225 gives the positions of ones.
A006093 seems to give all such k, that a(k) = k.

Examples

			              Binomial coeff.   Their product  Largest k!
                 A007318          A001142(n)   which divides
Row 0                1                    1        1!
Row 1              1   1                  1        1!
Row 2            1   2   1                2        2!
Row 3          1   3   3   1              9        1!
Row 4        1   4   6   4   1           96        4! (96 = 4*24)
Row 5      1   5  10  10   5   1       2500        2! (2500 = 1250*2)
Row 6    1   6  15  20  15   6   1   162000        6! (162000 = 225*720)
		

Crossrefs

One more than A249150.
Cf. A249423 (numbers k such that a(k) = k+1).
Cf. A249429 (numbers k such that a(k) > k).
Cf. A249433 (numbers k such that a(k) < k).
Cf. A249434 (numbers k such that a(k) >= k).
Cf. A249424 (numbers k such that a(k) = (k-1)/2).
Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n).
Cf. A249425 (record positions).
Cf. A249427 (record values).

Programs

  • PARI
    A249151(n) = { my(uplim,padicvals,b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); };
    \\ Alternative implementation:
    A001142(n) = prod(k=1, n, k^((k+k)-1-n));
    A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
    A249151(n) = A055881(A001142(n));
    for(n=0, 4096, write("b249151.txt", n, " ", A249151(n)));
    
  • Python
    from itertools import count
    from collections import Counter
    from math import comb
    from sympy import factorint
    def A249151(n):
        p = sum((Counter(factorint(comb(n,i))) for i in range(n+1)),start=Counter())
        for m in count(1):
            f = Counter(factorint(m))
            if not f<=p:
                return m-1
            p -= f # Chai Wah Wu, Aug 19 2025
  • Scheme
    (define (A249151 n) (A055881 (A001142 n)))
    

Formula

a(n) = A055881(A001142(n)).

A232096 a(n) = largest m such that m! divides 1+2+...+n; a(n) = A055881(A000217(n)).

Original entry on oeis.org

1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 5, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 4, 4, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 4, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 5, 1, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Crossrefs

A042963 gives the positions of ones and A014601 the positions of larger terms.

Programs

Formula

a(n) = A055881(A000217(n)).
a(n) = A231719(A226061(n+1)). [Not a practical way to compute this sequence, but follows from the definitions]

A232098 a(n) is the largest m such that m! divides n^2; a(n) = A055881(n^2).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

For all n, A055881(n) <= a(n), and probably also a(n) <= A055874(n).
Moreover, a(n) > A055881(n) if and only if A055874(n) > A055881(n), thus A055926 gives (also) all the positions where this sequence differs from A055881. Please see Comments section in A055926 for the proof.
Differs from A055874 for the first time at n=840, where a(840)=7, while A055874(840)=8. A232099 gives all the positions where such differences occur.

Crossrefs

Programs

  • Mathematica
    Module[{nn=10,fct},fct=Table[{f,f!},{f,nn}];Table[Select[fct,Mod[n^2,#[[2]]]==0&][[-1,1]],{n,90}]] (* Harvey P. Dale, Aug 11 2024 *)
  • Scheme
    (define (A232098 n) (A055881 (A000290 n)))

Formula

a(n) = A055881(A000290(n)) = A055881(n^2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A065887(k) = 1.78672776922161809767... . - Amiram Eldar, Jan 01 2024

A233285 a(n) = largest m such that m! divides n-th Fibonacci number; a(n) = A055881(A000045(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 6, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2013

Keywords

Comments

The lengths of palindromic prefixes begin as:
1, 2, 5, 8, 11, 23, 35, 47, 59, 119, 239, 359, 479, 959, 1439, 1919, ...
+1 results: 2, 3, 6, 9, 12, 24, 36, 48, 60, 120, 240, 360, 480, 960, 1440, 1920, ...

Crossrefs

Differs from A233284 for the first time at n=120, where a(120)=7, while A233284(120)=12.

A286143 Compound filter: a(n) = T(A055881(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 355, 7, 23, 29, 80, 2, 499, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1279, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1894, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2779, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1894, 16
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Differs from A286142 for the first time at n=24, where a(24) = 355, while A286142(24) = 328.

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017, after Robert G. Wilson v at A055881 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
    A286143(n) = (1/2)*(2 + ((A055881(n)+A046523(n))^2) - A055881(n) - 3*A046523(n));
    for(n=1, 10000, write("b286143.txt", n, " ", A286143(n)));
    
  • Python
    from sympy import factorial, factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a055881(n):
        m = 1
        while n%factorial(m)==0:
            m+=1
        return m - 1
    def a(n): return T(a055881(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286143 n) (* (/ 1 2) (+ (expt (+ (A055881 n) (A046523 n)) 2) (- (A055881 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A055881(n)+A046523(n))^2) - A055881(n) - 3*A046523(n)).

A233267 a(n) = A055881(A001110(n)); the largest m such that m! divides the n-th positive number which is both triangular and square.

Original entry on oeis.org

1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 11, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2013

Keywords

Comments

The sequence seems to have a nice symmetric fractal structure. The new distinct values (records) occur at positions k = 1, 2, 4, 12, 48, 288, 2016, 4032, ... those values being 1, 3, 4, 7, 11, 12, 13, 14, ...
Furthermore, each prefix from 1 to 2*k-1 (centered on a new record) seems to be palindromic. 2*k-1 runs as: 1, 3, 7, 23, 95, 575, 4031, 8063, ...
On the other hand, if we list ALL the positions p where prefix 1..p is palindromic, we obtain a sequence: 1, 3, 7, 11, 23, 35, 47, 95, 143, 191, 239, 287, 575, 863, 1151, 1439, 1727, 2015, 4031, ...
Its first differences is again familiar: 2, 4, 4, 12, 12, 12, 48, 48, 48, 48, 48, 288, 288, 288, 288, 288, 288, 2016, ... which appear to consist of 1, 2, 3, 5, 6, ... copies of the first mentioned sequence from its term 2 onward.
None of these sequences (except maybe the last) are in the OEIS as of Dec 06 2013.
Note: A233269(n) = A055881(A001109(n)) seems to have the same overall structure, but some of the records are missing/different.

Crossrefs

Programs

Formula

a(n) = A055881(A001110(n)).

A233269 a(n) = A055881(A001109(n)).

Original entry on oeis.org

1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 7, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2013

Keywords

Comments

Compared to A233267, here the records occur in slightly different positions: 1, 2, 8, 24, 48, 384, 3456, ..., the record values being 1, 3, 4, 5, 7, 8, 9, ...
Lengths of palindromic prefixes begin: 1, 3, 5, 7, 15, 23, 47, 95, 143, 191, 239, 287, 335, 383, 767, 1151, 1535, 1919, 2303, 2687, 3071, 3455, ...
Their first differences: 2, 2, 2, 8, 8, 24, 48, 48, 48, 48, 48, 48, 48, 384, 384, 384, 384, 384, 384, 384, 384, ...
The positions of palindrome-centers: 1, 2, 3, 7, 11, 23, 47, 71, 95, 119, 143, 167, 191, 383, 575, 767, 959, 1151, 1343, 1535, 1727, ...
and their first differences: 1, 1, 1, 4, 4, 12, 24, 24, 24, 24, 24, 24, 24, 192, 192, 192, 192, 192, 192, 192, 192, ...
None of these are currently in the OEIS (except maybe record values).

Crossrefs

Programs

A286381 Compound filter: a(n) = P(A055881(n), A278236(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 16, 12, 67, 9, 16, 23, 436, 80, 1771, 18, 67, 80, 1771, 668, 16111, 48, 277, 302, 7141, 2630, 64621, 14, 16, 23, 436, 80, 1771, 31, 436, 467, 21946, 1832, 87991, 94, 1771, 1832, 87991, 16292, 793171, 328, 7141, 7262, 352381, 64982, 3173941, 25, 67, 80, 1771, 668, 16111, 94, 1771, 1832, 87991, 16292, 793171, 706, 16111, 16292, 793171, 405452, 19841851
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A055881(n)+A278236(n))^2) - A055881(n) - 3*A278236(n)).

A005563 a(n) = n*(n+2) = (n+1)^2 - 1.

Original entry on oeis.org

0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
Offset: 0

Views

Author

Keywords

Comments

Erdős conjectured that n^2 - 1 = k! has a solution if and only if n is 5, 11 or 71 (when k is 4, 5 or 7).
Second-order linear recurrences y(m) = 2y(m-1) + a(n)*y(m-2), y(0) = y(1) = 1, have closed form solutions involving only powers of integers. - Len Smiley, Dec 08 2001
Number of edges in the join of two cycle graphs, both of order n, C_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Let k be a positive integer, M_n be the n X n matrix m_(i,j) = k^abs(i-j) then det(M_n) = (-1)^(n-1)*a(k-1)^(n-1). - Benoit Cloitre, May 28 2002
Also numbers k such that 4*k + 4 is a square. - Cino Hilliard, Dec 18 2003
For each term k, the function sqrt(x^2 + 1), starting with 1, produces an integer after k iterations. - Gerald McGarvey, Aug 19 2004
a(n) mod 3 = 0 if and only if n mod 3 > 0: a(A008585(n)) = 2; a(A001651(n)) = 0; a(n) mod 3 = 2*(1-A079978(n)). - Reinhard Zumkeller, Oct 16 2006
a(n) is the number of divisors of a(n+1) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007
Nonnegative X values of solutions to the equation X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(n+2). - Mohamed Bouhamida, Nov 06 2007
Sequence allows us to find X values of the equation: X + (X + 1)^2 + (X + 2)^3 = Y^2. To prove that X = n^2 + 2n: Y^2 = X + (X + 1)^2 + (X + 2)^3 = X^3 + 7*X^2 + 15X + 9 = (X + 1)(X^2 + 6X + 9) = (X + 1)*(X + 3)^2 it means: (X + 1) must be a perfect square, so X = k^2 - 1 with k>=1. we can put: k = n + 1, which gives: X = n^2 + 2n and Y = (n + 1)(n^2 + 2n + 3). - Mohamed Bouhamida, Nov 12 2007
From R. K. Guy, Feb 01 2008: (Start)
Toads and Frogs puzzle:
This is also the number of moves that it takes n frogs to swap places with n toads on a strip of 2n + 1 squares (or positions, or lily pads) where a move is a single slide or jump, illustrated for n = 2, a(n) = 8 by
T T - F F
T - T F F
T F T - F
T F T F -
T F - F T
- F T F T
F - T F T
F F T - T
F F - T T
I was alerted to this by the Holton article, but on consulting Singmaster's sources, I find that the puzzle goes back at least to 1867.
Probably the first to publish the number of moves for n of each animal was Edouard Lucas in 1883. (End)
a(n+1) = terms of rank 0, 1, 3, 6, 10 = A000217 of A120072 (3, 8, 5, 15). - Paul Curtz, Oct 28 2008
Row 3 of array A163280, n >= 1. - Omar E. Pol, Aug 08 2009
Final digit belongs to a periodic sequence: 0, 3, 8, 5, 4, 5, 8, 3, 0, 9. - Mohamed Bouhamida, Sep 04 2009 [Comment edited by N. J. A. Sloane, Sep 24 2009]
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N. There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z. However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x. The present sequence represents the non-integer part when the polynomial is x^2 + x + 1 and x = sqrt(2), f(x+n*f(x))/f(x) = A056108(n) + a(n)*sqrt(2). - A.K. Devaraj, Sep 18 2009
For n >= 1, a(n) is the number for which 1/a(n) = 0.0101... (A000035) in base (n+1). - Rick L. Shepherd, Sep 27 2009
For n > 0, continued fraction [n, 1, n] = (n+1)/a(n); e.g., [6, 1, 6] = 7/48. - Gary W. Adamson, Jul 15 2010
Starting (3, 8, 15, ...) = binomial transform of [3, 5, 2, 0, 0, 0, ...]; e.g., a(3) = 15 = (1*3 + 2*5 +1*2) = (3 + 10 + 2). - Gary W. Adamson, Jul 30 2010
a(n) is essentially the case 0 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_0(n) = 2*n-n^2 and a(n) = -P_0(n+2). See also A067998 and for the case k=1 A080956. - Peter Luschny, Jul 08 2011
a(n) is the maximal determinant of a 2 X 2 matrix with integer elements from {1, ..., n+1}, so the maximum determinant of a 2x2 matrix with integer elements from {1, ..., 5} = 5^2 - 1 = a(4) = 24. - Aldo González Lorenzo, Oct 12 2011
Using four consecutive triangular numbers t1, t2, t3 and t4, plot the points (0, 0), (t1, t2), and (t3, t4) to create a triangle. Twice the area of this triangle are the numbers in this sequence beginning with n = 1 to give 8. - J. M. Bergot, May 03 2012
Given a particle with spin S = n/2 (always a half-integer value), the quantum-mechanical expectation value of the square of the magnitude of its spin vector evaluates to = S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012
Twice the harmonic mean [H(x, y) = (2*x*y)/(x + y)] of consecutive triangular numbers A000217(n) and A000217(n+1). - Raphie Frank, Sep 28 2012
Number m such that floor(sqrt(m)) = floor(m/floor(sqrt(m))) - 2 for m > 0. - Takumi Sato, Oct 10 2012
The solutions of equation 1/(i - sqrt(j)) = i + sqrt(j), when i = (n+1), j = a(n). For n = 1, 2 + sqrt(3) = 3.732050.. = A019973. For n = 2, 3 + sqrt(8) = 5.828427... = A156035. - Kival Ngaokrajang, Sep 07 2013
The integers in the closed form solution of a(n) = 2*a(n-1) + a(m-2)*a(n-2), n >= 2, a(0) = 0, a(1) = 1 mentioned by Len Smiley, Dec 08 2001, are m and -m + 2 where m >= 3 is a positive integer. - Felix P. Muga II, Mar 18 2014
Let m >= 3 be a positive integer. If a(n) = 2*a(n-1) + a(m-2) * a(n-2), n >= 2, a(0) = 0, a(1) = 1, then lim_{n->oo} a(n+1)/a(n) = m. - Felix P. Muga II, Mar 18 2014
For n >= 4 the Szeged index of the wheel graph W_n (with n + 1 vertices). In the Sarma et al. reference, Theorem 2.7 is incorrect. - Emeric Deutsch, Aug 07 2014
If P_{k}(n) is the n-th k-gonal number, then a(n) = t*P_{s}(n+2) - s*P_{t}(n+2) for s=t+1. - Bruno Berselli, Sep 04 2014
For n >= 1, a(n) is the dimension of the simple Lie algebra A_n. - Wolfdieter Lang, Oct 21 2015
Finding all positive integers (n, k) such that n^2 - 1 = k! is known as Brocard's problem, (see A085692). - David Covert, Jan 15 2016
For n > 0, a(n) mod (n+1) = a(n) / (n+1) = n. - Torlach Rush, Apr 04 2016
Conjecture: When using the Sieve of Eratosthenes and sieving (n+1..a(n)), with divisors (1..n) and n>0, there will be no more than a(n-1) composite numbers. - Fred Daniel Kline, Apr 08 2016
a(n) mod 8 is periodic with period 4 repeating (0,3,0,7), that is a(n) mod 8 = 5/2 - (5/2) cos(n*Pi) - sin(n*Pi/2) + sin(3*n*Pi/2). - Andres Cicuttin, Jun 02 2016
Also for n > 0, a(n) is the number of times that n-1 occurs among the first (n+1)! terms of A055881. - R. J. Cano, Dec 21 2016
The second diagonal of composites (the only prime is number 3) from the right on the Klauber triangle (see Kival Ngaokrajang link), which is formed by taking the positive integers and taking the first 1, the next 3, the following 5, and so on, each centered below the last. - Charles Kusniec, Jul 03 2017
Also the number of independent vertex sets in the n-barbell graph. - Eric W. Weisstein, Aug 16 2017
Interleaving of A000466 and A033996. - Bruce J. Nicholson, Nov 08 2019
a(n) is the number of degrees of freedom in a triangular cell for a Raviart-Thomas or Nédélec first kind finite element space of order n. - Matthew Scroggs, Apr 22 2020
From Muge Olucoglu, Jan 19 2021: (Start)
For n > 1, a(n-2) is the maximum number of elements in the second stage of the Quine-McCluskey algorithm whose minterms are not covered by the functions of n bits. At n=3, we have a(3-2) = a(1) = 1*(1+2) = 3 and f(A,B,C) = sigma(0,1,2,5,6,7).
.
0 1 2 5 6 7
+---------------
*(0,1)| X X
(0,2)| X X
(1,5)| X X
*(2,6)| X X
*(5,7)| X X
(6,7)| X X
.
*: represents the elements that are covered. (End)
1/a(n) is the ratio of the sum of the first k odd numbers and the sum of the next n*k odd numbers. - Melvin Peralta, Jul 15 2021
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {1, 2n}]. - Magus K. Chu, Sep 09 2022
Number of diagonals parallel to an edge in a regular (2*n+4)-gon (cf. A367204). - Paolo Xausa, Nov 21 2023
For n >= 1, also the number of minimum cyclic edge cuts in the (n+2)-trapezohedron graph. - Eric W. Weisstein, Nov 21 2024
For n >= 1, a(n) is the sum of the interior angles of a polygon with n+2 sides, in radians, multiplied by (n+2)/Pi. - Stuart E Anderson, Aug 06 2025

Examples

			G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see index under Toads and Frogs Puzzle.
  • Martin Gardner, Perplexing Puzzles and Tantalizing Teasers, p. 21 (for "The Dime and Penny Switcheroo").
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • Derek Holton, Math in School, 37 #1 (Jan 2008) 20-22.
  • Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Vol. 2 (1883) 141-143.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(3-x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A000290(n+1) - 1.
A002378(a(n)) = A002378(n)*A002378(n+1); e.g., A002378(15)=240=12*20. - Charlie Marion, Dec 29 2003
a(n) = A067725(n)/3. - Zerinvary Lajos, Mar 06 2007
a(n) = Sum_{k=1..n} A144396(k). - Zerinvary Lajos, May 11 2007
a(n) = A134582(n+1)/4. - Zerinvary Lajos, Feb 01 2008
A143053(a(n)) = A000290(n+1), for n > 0. - Reinhard Zumkeller, Jul 20 2008
a(n) = Real((n+1+i)^2). - Gerald Hillier, Oct 12 2008
A053186(a(n)) = 2*n. - Reinhard Zumkeller, May 20 2009
a(n) = (n! + (n+1)!)/(n-1)!, n > 0. - Gary Detlefs, Aug 10 2009
a(n) = floor(n^5/(n^3+1)) with offset 1 (a(1)=0). - Gary Detlefs, Feb 11 2010
a(n) = a(n-1) + 2*n + 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = 3/4. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^(n-1)*(cos(x))^3), for n > 0. - Francesco Daddi, Aug 02 2011
a(n) = A002378(n) + floor(sqrt(A002378(n))); pronic number + its root. - Fred Daniel Kline, Sep 16 2011
a(n-1) = A008833(n) * A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
G.f.: U(0) where U(k) = -1 + (k+1)^2/(1 - x/(x + (k+1)^2/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = 15*C(n+4,3)*C(n+4,5)/(C(n+4,2)*C(n+4,4)). - Gary Detlefs, Aug 05 2013
a(n) = (n+2)!/((n-1)! + n!), n > 0. - Ivan N. Ianakiev, Nov 11 2013
a(n) = 3*C(n+1,2) - C(n,2) for n >= 0. - Felix P. Muga II, Mar 11 2014
a(n) = (A016742(n+1) - 4)/4 for n >= 0. - Felix P. Muga II, Mar 11 2014
a(-2 - n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
A253607(a(n)) = 1. - Reinhard Zumkeller, Jan 05 2015
E.g.f.: x*(x + 3)*exp(x). - Ilya Gutkovskiy, Jun 03 2016
For n >= 1, a(n^2 + n - 2) = a(n-1) * a(n). - Miko Labalan, Oct 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2.
Product_{n>=1} (1 - 1/a(n)) = -sqrt(2)*sin(sqrt(2)*Pi)/Pi. (End)
a(n) = A000290(n+2) - n*2. See Bounded Squares illustration. - Leo Tavares, Oct 05 2021
From Leo Tavares, Oct 10 2021: (Start)
a(n) = A008585(n) + 2*A000217(n-1). See Trapezoids illustration.
2*A005563 = A054000(n+1). See Trapagons illustration.
a(n) = 2*A000217(n) + n. (End)
a(n) = (n+2)!!/(n-2)!! for n > 1. - Jacob Szlachetka, Jan 02 2022

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
More terms from N. J. A. Sloane, Aug 01 2010

A007623 Integers written in factorial base.

Original entry on oeis.org

0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, 1201, 1210, 1211, 1220, 1221, 1300, 1301, 1310, 1311, 1320, 1321, 2000, 2001, 2010
Offset: 0

Views

Author

Keywords

Comments

Places reading from right have values (1, 2, 6, 24, 120, ...) = factorials.
Also the reversed inversion vectors for the list of all finite permutations in reversed lexicographic order: A055089.
This concatenated representation is unsatisfactory for large n (above 36287999), when coefficients of 10 or greater start to appear. For these large numbers the representation given in A108731 is better. - N. J. A. Sloane, Jun 04 2012
For n < 10*10!-1, a(n) = concatenation of n-th row of triangle in A108731. - Reinhard Zumkeller, Jun 04 2012
a(n) = A049345(n) for n=0..23. - Reinhard Zumkeller, Jan 05 2014
For n = 36288000 = 10 * 10!, the digits in factorial base are {10, 0, 0, 0, 0, 0, 0, 0, 0, 0}. - Michael De Vlieger, Oct 11 2015, corrected and edited by M. F. Hasler, Nov 27 2018
The alt text in xkcd comic #2835 describes "Numbers larger than about 3.6 million" to be illegal. See links. - David Cleaver, Sep 30 2023

Examples

			a(47) = 1321 because 47 = 1*4! + 3*3! + 2*2! + 1*1!
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 192.
  • F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A034968 (sum of digits), A060130 (number of nonzero digits), A099563 (the most significant digit).
Cf. also A055089, A055881, A060112, A060495. Permutation of A064039.
See index entry "factorial base representation" for many more related sequences.
See also primorial base A049345.

Programs

  • Haskell
    a007623 n | n <= 36287999 = read $ concatMap show (a108731_row n) :: Int
              | otherwise     = error "representation would be ambiguous"
    -- Reinhard Zumkeller, Jun 04 2012
    (Scheme, R6RS standard) (define (A007623 n) (let loop ((n n) (s 0) (p 1) (i 2)) (if (zero? n) s (let ((d (mod n i))) (loop (/ (- n d) i) (+ (* p d) s) (* 10 p) (+ 1 i)))))) ;; In older Schemes use modulo instead of mod. - Antti Karttunen, Feb 13 2016
    
  • Maple
    a := n -> if nargs<2 then a(n,2) elif n
    				
  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; Table[FromDigits[factBaseIntDs[n]], {n, 0, 50}] (* Alonso del Arte, May 03 2006 *)
    lim = 50; m = 1; While[Factorial@ m < lim, m++]; m; IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] & /@ Range@ lim (* Michael De Vlieger, Oct 11 2015, Version 10.2 *)
  • PARI
    apply( a(n,p=2)=if(nM. F. Hasler, Mar 27 2007; minor edit Nov 26 2018
    
  • Python
    def a(n, p=2): return n if n

Extensions

More terms from R. K. Guy
Showing 1-10 of 31 results. Next