cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001177 Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).

Original entry on oeis.org

1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, 56, 75, 36, 42, 27, 36, 10, 24, 36, 42, 58, 60, 15, 30, 24, 48, 35, 60, 68, 18, 24, 120
Offset: 1

Views

Author

Keywords

Comments

In the formula, the relation a(p^e) = p^(e-1)*a(p) is called Wall's conjecture, which has been verified for primes up to 10^14. See A060305. Primes for which this relation fails are called Wall-Sun-Sun primes. - T. D. Noe, Mar 03 2009
All solutions to F_m == 0 (mod n) are given by m == 0 (mod a(n)). For a proof see, e.g., Vajda, p. 73. [Old comment changed by Wolfdieter Lang, Jan 19 2015]
If p is a prime of the form 10n +- 1 then a(p) is a divisor of p-1. If q is a prime of the form 10n +- 3 then a(q) is a divisor of q+1. - Robert G. Wilson v, Jul 07 2007
Definition 1 in Riasat (2011) calls this k(n), or sometimes just k. Corollary 1 in the same paper, "every positive integer divides infinitely many Fibonacci numbers," demonstrates that this sequence is infinite. - Alonso del Arte, Jul 27 2013
If p is a prime then a(p) <= p+1. This is because if p is a prime then exactly one of the following Fibonacci numbers is a multiple of p: F(p-1), F(p) or F(p+1). - Dmitry Kamenetsky, Jul 23 2015
From Renault 1996:
1. a(lcm(n,m)) = lcm(a(n), a(m)).
2. if n|m then a(n)|a(m).
3. if m has prime factorization m=p1^e1 * p2^e2 * ... * pn^en then a(m) = lcm(a(p1^e1), a(p2^e2), ..., a(pn^en)). - Dmitry Kamenetsky, Jul 23 2015
a(n)=n if and only if n=5^k or n=12*5^k for some k >= 0 (see Marques 2012). - Dmitry Kamenetsky, Aug 08 2015
Every positive integer (except 2) eventually appears in this sequence. This is because every Fibonacci number bigger than 1 (except Fibonacci(6)=8 and Fibonacci(12)=144) has at least one prime factor that is not a factor of any earlier Fibonacci number (see Knott reference). Let f(n) be such a prime factor for Fibonacci(n); then a(f(n))=n. - Dmitry Kamenetsky, Aug 08 2015
We can reconstruct the Fibonacci numbers from this sequence using the formula Fibonacci(n+2) = 1 + Sum_{i: a(i) <= n} phi(i)*floor(n/a(i)), where phi(n) is Euler's totient function A000010 (see the Stroinski link). For example F(6) = 1 + phi(1)*floor(4/a(1)) + phi(2)*floor(4/a(2)) + phi(3)*floor(4/a(4)) = 1 + 1*4 + 1*1 + 2*1 = 8. - Peter Bala, Sep 10 2015
Conjecture: Sum_{d|n} phi(d)*a(d) = A232656(n). - Logan J. Kleinwaks, Oct 28 2017
a(F_m) = m for all m > 1. Indeed, let (b(j)) be defined by b(1)=b(2)=1, and b(j+2) = (b(j) + b(j+1)) mod n. Then a(n) equals the index of the first occurrence of 0 in (b(j)). Example: if n=4 then b = A079343 = 1,1,2,3,1,0,1,1,..., so a(4)=6. If n is a Fibonacci number n=F_m, then obviously a(n)=m. Note that this gives a simple proof of the fact that all integers larger than 2 occur in (a(n)). - Michel Dekking, Nov 10 2017

Examples

			a(4) = 6 because the smallest Fibonacci number that 4 divides is F(6) = 8.
a(5) = 5 because the smallest Fibonacci number that 5 divides is F(5) = 5.
a(6) = 12 because the smallest Fibonacci number that 6 divides is F(12) = 144.
From _Wolfdieter Lang_, Jan 19 2015: (Start)
a(2) = 3, hence 2 | F(m) iff m = 2*k, for k >= 0;
a(3) = 4, hence 3 | F(m) iff m = 4*k, for k >= 0;
etc. See a comment above with the Vajda reference.
(End)
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 25.
  • B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 1968.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Afterword by Herbert A. Hauptman, Nobel Laureate, 2. 'The Minor Modulus m(n)', Prometheus Books, NY, 2007, page 329-342.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
  • N. N. Vorob'ev, Fibonacci numbers, Blaisdell, NY, 1961.

Crossrefs

Cf. A000045, A001175, A001176, A060383, A001602. First occurrence of k is given in A131401. A233281 gives such k that a(k) is a prime.
From Antti Karttunen, Dec 21 2013: (Start)
Various derived sequences:
A047930(n) = A000045(a(n)).
A037943(n) = A000045(a(n))/n.
A217036(n) = A000045(a(n)-1) mod n.
A132632(n) = a(n^2).
A132633(n) = a(n^3).
A214528(n) = a(n!).
A215011(n) = a(A000217(n)).
A215453(n) = a(n^n).
Analogous sequence for the tribonacci numbers: A046737, for Lucas numbers: A223486, for Pell numbers: A214028.

Programs

  • Haskell
    a001177 n = head [k | k <- [1..], a000045 k `mod` n == 0]
    -- Reinhard Zumkeller, Jan 15 2014
  • Maple
    A001177 := proc(n)
            for k from 1 do
                    if combinat[fibonacci](k) mod n = 0 then
                            return k;
                    end if;
            end do:
    end proc: # R. J. Mathar, Jul 09 2012
    N:= 1000: # to get a(1) to a(N)
    L:= ilcm($1..N):
    count:= 0:
    for n from 1 while count < N do
      fn:= igcd(L,combinat:-fibonacci(n));
      divs:= select(`<=`,numtheory:-divisors(fn),N);
      for d in divs do if not assigned(A[d]) then count:= count+1; A[d]:= n fi od:
    od:
    seq(A[n],n=1..N); # Robert Israel, Oct 14 2015
  • Mathematica
    fibEntry[n_] := Block[{k = 1}, While[ Mod[ Fibonacci@k, n] != 0, k++ ]; k]; Array[fibEntry, 74] (* Robert G. Wilson v, Jul 04 2007 *)
  • PARI
    a(n)=if(n<0,0,s=1;while(fibonacci(s)%n>0,s++);s) \\ Benoit Cloitre, Feb 10 2007
    
  • PARI
    ap(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    a(n)=if(n==1,return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i,1]>1e14,ap(f[i,1]^f[i,2]), ap(f[i,1])*f[i,1]^(f[i,2]-1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<Charles R Greathouse IV, May 08 2017
    
  • Scheme
    (define (A001177 n) (let loop ((k 1)) (cond ((zero? (modulo (A000045 k) n)) k) (else (loop (+ k 1)))))) ;; Antti Karttunen, Dec 21 2013
    

Formula

A001175(n) = A001176(n) * a(n) for n >= 1.
a(n) = n if and only if n is of form 5^k or 12*5^k (proved in Marques paper), a(n) = n - 1 if and only if n is in A106535, a(n) = n + 1 if and only if n is in A000057, a(n) = n + 5 if and only if n is in 5*A000057, ... - Benoit Cloitre, Feb 10 2007
a(1) = 1, a(2) = 3, a(4) = 6 and for e > 2, a(2^e) = 3*2^(e-2); a(5^e) = 5^e; and if p is an odd prime not 5, then a(p^e) = p^max(0, e-s)*a(p) where s = valuation(A000045(a(p)), p) (Wall's conjecture states that s = 1 for all p). If (m, n) = 1 then a(m*n) = lcm(a(m), a(n)). See Posamentier & Lahmann. - Robert G. Wilson v, Jul 07 2007; corrected by Max Alekseyev, Oct 19 2007, Jun 24 2011
Apparently a(n) = A213648(n) + 1 for n >= 2. - Art DuPre, Jul 01 2012
a(n) < n^2. [Vorob'ev]. - Zak Seidov, Jan 07 2016
a(n) < n^2 - 3n + 6. - Jinyuan Wang, Oct 13 2018
a(n) <= 2n [Salle]. - Jon Maiga, Apr 25 2019

Extensions

Definition corrected by Wolfdieter Lang, Jan 19 2015

A055881 a(n) = largest m such that m! divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet and Labos Elemer, Jul 16 2000

Keywords

Comments

Number of factorial divisors of n. - Amarnath Murthy, Oct 19 2002
The sequence may be constructed as follows. Step 1: start with 1, concatenate and add +1 to last term gives: 1,2. Step 2: 2 is the last term so concatenate twice those terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3 we get 6 terms. Step 3: 3 is the last term, concatenate 3 times those 6 terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, iterates. At k-th step we obtain (k+1)! terms. - Benoit Cloitre, Mar 11 2003
From Benoit Cloitre, Aug 17 2007, edited by M. F. Hasler, Jun 28 2016: (Start)
Another way to construct the sequence: start from an infinite series of 1's:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Replace every second 1 by a 2 giving:
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... Replace every third 2 by a 3 giving:
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, ... Replace every fourth 3 by a 4 etc. (End)
This sequence is the fixed point, starting with 1, of the morphism m, where m(1) = 1, 2, and for k > 1, m(k) is the concatenation of m(k - 1), the sequence up to the first k, and k + 1. Thus m(2) = 1, 2, 1, 3; m(3) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4; m(4) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, etc. - Franklin T. Adams-Watters, Jun 10 2009
All permutations of n elements can be listed as follows: Start with the (arbitrary) permutation P(0), and to obtain P(n + 1), reverse the first a(n) + 1 elements in P(n). The last permutation is the reversal of the first, so the path is a cycle in the underlying graph. See example and fxtbook link. - Joerg Arndt, Jul 16 2011
Positions of rightmost change with incrementing rising factorial numbers, see example. - Joerg Arndt, Dec 15 2012
Records appear at factorials. - Robert G. Wilson v, Dec 21 2012
One more than the number of trailing zeros (A230403(n)) in the factorial base representation of n (A007623(n)). - Antti Karttunen, Nov 18 2013
A062356(n) and a(n) coincide quite often. - R. J. Cano, Aug 04 2014
For n>0 and 1<=j<=(n+1)!-1, (n+1)^2-1=A005563(n) is the number of times that a(j)=n-1. - R. J. Cano, Dec 23 2016

Examples

			a(12) = 3 because 3! is highest factorial to divide 12.
From _Joerg Arndt_, Jul 16 2011: (Start)
All permutations of 4 elements via prefix reversals:
   n:   permutation  a(n)+1
   0:   [ 0 1 2 3 ]  -
   1:   [ 1 0 2 3 ]  2
   2:   [ 2 0 1 3 ]  3
   3:   [ 0 2 1 3 ]  2
   4:   [ 1 2 0 3 ]  3
   5:   [ 2 1 0 3 ]  2
   6:   [ 3 0 1 2 ]  4
   7:   [ 0 3 1 2 ]  2
   8:   [ 1 3 0 2 ]  3
   9:   [ 3 1 0 2 ]  2
  10:   [ 0 1 3 2 ]  3
  11:   [ 1 0 3 2 ]  2
  12:   [ 2 3 0 1 ]  4
  13:   [ 3 2 0 1 ]  2
  14:   [ 0 2 3 1 ]  3
  15:   [ 2 0 3 1 ]  2
  16:   [ 3 0 2 1 ]  3
  17:   [ 0 3 2 1 ]  2
  18:   [ 1 2 3 0 ]  4
  19:   [ 2 1 3 0 ]  2
  20:   [ 3 1 2 0 ]  3
  21:   [ 1 3 2 0 ]  2
  22:   [ 2 3 1 0 ]  3
  23:   [ 3 2 1 0 ]  2
(End)
From _Joerg Arndt_, Dec 15 2012: (Start)
The first few rising factorial numbers (dots for zeros) with 4 digits and the positions of the rightmost change with incrementing are:
  [ 0]    [ . . . . ]   -
  [ 1]    [ 1 . . . ]   1
  [ 2]    [ . 1 . . ]   2
  [ 3]    [ 1 1 . . ]   1
  [ 4]    [ . 2 . . ]   2
  [ 5]    [ 1 2 . . ]   1
  [ 6]    [ . . 1 . ]   3
  [ 7]    [ 1 . 1 . ]   1
  [ 8]    [ . 1 1 . ]   2
  [ 9]    [ 1 1 1 . ]   1
  [10]    [ . 2 1 . ]   2
  [11]    [ 1 2 1 . ]   1
  [12]    [ . . 2 . ]   3
  [13]    [ 1 . 2 . ]   1
  [14]    [ . 1 2 . ]   2
  [15]    [ 1 1 2 . ]   1
  [16]    [ . 2 2 . ]   2
  [17]    [ 1 2 2 . ]   1
  [18]    [ . . 3 . ]   3
  [19]    [ 1 . 3 . ]   1
  [20]    [ . 1 3 . ]   2
  [21]    [ 1 1 3 . ]   1
  [22]    [ . 2 3 . ]   2
  [23]    [ 1 2 3 . ]   1
  [24]    [ . . . 1 ]   4
  [25]    [ 1 . . 1 ]   1
  [26]    [ . 1 . 1 ]   2
(End)
		

Crossrefs

This sequence occurs also in the next to middle diagonals of A230415 and as the second rightmost column of triangle A230417.
Other sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.
Analogous sequence for binary (base-2) representation: A001511.

Programs

  • Mathematica
    Table[Length[Intersection[Divisors[n], Range[5]!]], {n, 125}] (* Alonso del Arte, Dec 10 2012 *)
    f[n_] := Block[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 21 2012 *)
  • PARI
    See Cano link.
    
  • PARI
    n=5; f=n!; x='x+O('x^f); Vec(sum(k=1,n,x^(k!)/(1-x^(k!)))) \\ Joerg Arndt, Jan 28 2014
    
  • PARI
    a(n)=for(k=2,n+1,if(n%k, return(k-1),n/=k)) \\ Charles R Greathouse IV, May 28 2015
  • Scheme
    (define (A055881 n) (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 1)) (else (loop (/ n i) (+ 1 i))))))
    

Formula

G.f.: Sum_{k > 0} x^(k!)/(1 - x^(k!)). - Vladeta Jovovic, Dec 13 2002
a(n) = A230403(n)+1. - Antti Karttunen, Nov 18 2013
a(n) = A230415(n-1,n) = A230415(n,n-1) = A230417(n,n-1). - Antti Karttunen, Nov 19 2013
a(m!+n) = a(n) if 1 <= n <= m*m! - 1 = A001563(m) - 1. - R. J. Cano, Jun 27 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = e - 1 (A091131). - Amiram Eldar, Jul 23 2022

A233283 Record values in partial LCM-products (A233287) of Fibonacci entry points (A001177).

Original entry on oeis.org

1, 3, 12, 60, 120, 840, 2520, 12600, 239400, 2633400, 5266800, 15800400, 458211600, 7789597200, 288215096400, 3746796253200, 26227573772400, 131137868862000, 1049102950896000, 24129367870608000, 1906220061778032000, 78155022532899312000, 6955797005428038768000
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

Conjecture: sequence gives the positions of records in A233284.
a(n+1)/a(n) = 3,4,5,2,7,3,5,19,11,2,3,29,17,37,13,7,5,8,23,79... - Ralf Stephan, Dec 17 2013

Crossrefs

Programs

Formula

a(n) = A233287(A233282(n)).

A233267 a(n) = A055881(A001110(n)); the largest m such that m! divides the n-th positive number which is both triangular and square.

Original entry on oeis.org

1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 11, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2013

Keywords

Comments

The sequence seems to have a nice symmetric fractal structure. The new distinct values (records) occur at positions k = 1, 2, 4, 12, 48, 288, 2016, 4032, ... those values being 1, 3, 4, 7, 11, 12, 13, 14, ...
Furthermore, each prefix from 1 to 2*k-1 (centered on a new record) seems to be palindromic. 2*k-1 runs as: 1, 3, 7, 23, 95, 575, 4031, 8063, ...
On the other hand, if we list ALL the positions p where prefix 1..p is palindromic, we obtain a sequence: 1, 3, 7, 11, 23, 35, 47, 95, 143, 191, 239, 287, 575, 863, 1151, 1439, 1727, 2015, 4031, ...
Its first differences is again familiar: 2, 4, 4, 12, 12, 12, 48, 48, 48, 48, 48, 288, 288, 288, 288, 288, 288, 2016, ... which appear to consist of 1, 2, 3, 5, 6, ... copies of the first mentioned sequence from its term 2 onward.
None of these sequences (except maybe the last) are in the OEIS as of Dec 06 2013.
Note: A233269(n) = A055881(A001109(n)) seems to have the same overall structure, but some of the records are missing/different.

Crossrefs

Programs

Formula

a(n) = A055881(A001110(n)).

A233284 a(n) = largest m such that 1, 2, ..., m divide n-th Fibonacci number; a(n) = A055874(A000045(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 6, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 12
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2013

Keywords

Comments

It seems that the records occur at the positions given by A233283: 1, 3, 12, 60, 120, 840, 2520, 12600, ...
The corresponding record values begin as 1, 2, 4, 6, 12, 16, 24, 36, ... (maybe A007416?).

Crossrefs

Differs from A233285 for the first time at n=120, where a(120)=12, while A233285(120)=7.

A233287 a(n) = lcm_{i=1..n} A001177(i); partial LCM-products of Fibonacci entry points.

Original entry on oeis.org

1, 3, 12, 12, 60, 60, 120, 120, 120, 120, 120, 120, 840, 840, 840, 840, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 239400, 239400, 239400, 239400, 239400, 239400, 2633400
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

From n=3 onward it seems that lcm_{i=1..n} A001175(i) = 2*a(n).

Crossrefs

Records occur at A233282. Cf. also A233283, A233284, A233285, A001175..A001177, A035105.

Formula

a(1)=1, and for n > 1, a(n) = lcm(A001177(n), a(n-1)).
a(n) = lcm_{i=1..n} A001177(i). [the least common multiple of all terms from A001177(1) to A001177(n)]

A233269 a(n) = A055881(A001109(n)).

Original entry on oeis.org

1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 7, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2013

Keywords

Comments

Compared to A233267, here the records occur in slightly different positions: 1, 2, 8, 24, 48, 384, 3456, ..., the record values being 1, 3, 4, 5, 7, 8, 9, ...
Lengths of palindromic prefixes begin: 1, 3, 5, 7, 15, 23, 47, 95, 143, 191, 239, 287, 335, 383, 767, 1151, 1535, 1919, 2303, 2687, 3071, 3455, ...
Their first differences: 2, 2, 2, 8, 8, 24, 48, 48, 48, 48, 48, 48, 48, 384, 384, 384, 384, 384, 384, 384, 384, ...
The positions of palindrome-centers: 1, 2, 3, 7, 11, 23, 47, 71, 95, 119, 143, 167, 191, 383, 575, 767, 959, 1151, 1343, 1535, 1727, ...
and their first differences: 1, 1, 1, 4, 4, 12, 24, 24, 24, 24, 24, 24, 24, 192, 192, 192, 192, 192, 192, 192, 192, ...
None of these are currently in the OEIS (except maybe record values).

Crossrefs

Programs

A233286 Number of trailing zeros in the factorial base representation of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2013

Keywords

Comments

A233285 is the main entry for this topic, see comments there.

Examples

			The factorial base representation (A007623(A000045(n))) of Fibonacci numbers look like this, from n=1 onward: 1, 1, 10, 11, 21, 110, 201, 311, 1120, 2101, 3221, 11000, 14221, 30221, 50120, 121011, 211201, 332220, ...
When we count the trailing zeros of each, we get 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, ..., the first terms of this sequence.
		

Crossrefs

One less than A233285. Cf. also A007623, A000045, A230403.

Programs

Formula

a(n) = A230403(A000045(n)) = A233285(n)-1.

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 18 2025
Showing 1-8 of 8 results.