cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056115 a(n) = n*(n+11)/2.

Original entry on oeis.org

0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Third column of Pascal (1, 6) triangle A096956.

Programs

  • GAP
    List([0..50], n-> n*(n+11)/2 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [n*(n+11)/2: n in [0..50]]; // G. C. Greubel, Jan 18 2020
    
  • Mathematica
    ((2*Range[0,50]+11)^2 -11^2)/8 (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    a(n)=n*(n+11)/2; \\ Joerg Arndt, Oct 25 2014
    
  • Sage
    [n*(n+11)/2 for n in (0..50)] # G. C. Greubel, Jan 18 2020
    

Formula

G.f.: x*(6-5*x)/(1-x)^3.
a(n) = A000096(n) + 4*A001477(n) = A056000(n) + A001477(n) = A056119(n) - A001477(n). - Zerinvary Lajos, Oct 01 2006
a(n) = A126890(n,5) for n>4. - Reinhard Zumkeller, Dec 30 2006
Equals A119412/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..n-i} ( binomial(n,k)*stirling1(n-k,i) *Product_{j=0..k-1} (-a-j) ), then a(n) = -f(n,n-1,6), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 5 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 83711/152460. - R. J. Mathar, Jul 14 2012
a(n) = 6*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(12 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/11 - 20417/152460. - Amiram Eldar, Jan 10 2021