cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056119 a(n) = n*(n+13)/2.

Original entry on oeis.org

0, 7, 15, 24, 34, 45, 57, 70, 84, 99, 115, 132, 150, 169, 189, 210, 232, 255, 279, 304, 330, 357, 385, 414, 444, 475, 507, 540, 574, 609, 645, 682, 720, 759, 799, 840, 882, 925, 969, 1014, 1060, 1107, 1155, 1204, 1254, 1305, 1357, 1410, 1464, 1519, 1575
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

Crossrefs

Programs

Formula

G.f.: x*(7-6*x)/(1-x)^3.
a(n) = A126890(n,6) for n > 5. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000096(n) + 5*A001477(n) = A056115(n) + A001477(n) = A056121(n) - A001477(n). - Zerinvary Lajos, Feb 22 2008
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,7), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 6 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 1145993/2342340 via A132759. - R. J. Mathar, Jul 14 2012
a(n) = 7*n - floor(n/2) + floor(n/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(14 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/13 - 263111/2342340. - Amiram Eldar, Jan 10 2021

Extensions

More terms from James Sellers, Jul 05 2000