cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056121 a(n) = n*(n + 15)/2.

Original entry on oeis.org

0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, 918, 962, 1007, 1053, 1100, 1148, 1197, 1247, 1298, 1350, 1403, 1457, 1512, 1568, 1625
Offset: 0

Views

Author

Barry E. Williams, Jul 06 2000

Keywords

Crossrefs

Programs

  • GAP
    List([0..60], n-> n*(n+15)/2 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [n*(n+15)/2: n in [0..60]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    a:=n->n*(n+15)/2: seq(a(n),n=0..60);
  • Mathematica
    Table[n*(n + 15)/2, {n, 0, 100}] (* Paolo Xausa, Aug 02 2024 *)
  • PARI
    a(n)=n*(n+15)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+15)/2 for n in (0..60)] # G. C. Greubel, Jan 18 2020
    

Formula

G.f.: x*(8-7*x)/(1-x)^3.
a(n) = A000096(n) + 6*n = A056119(n) + n = A056126(n) - n. - Zerinvary Lajos, Oct 01 2006
a(n-15) = binomial(n,2) - 7*n. - Zerinvary Lajos, Nov 26 2006
a(n) = A126890(n,7) for n>6. - Reinhard Zumkeller, Dec 30 2006
Let f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,8), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1)+ n + 7 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 1195757/2702700 via A132760. - R. J. Mathar, Jul 14 2012
a(n) = 8*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(16 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 52279/540540. - Amiram Eldar, Jan 10 2021

Extensions

More terms from James Sellers, Jul 07 2000