A056272 Word structures of length n using a 5-ary alphabet.
1, 1, 2, 5, 15, 52, 202, 855, 3845, 18002, 86472, 422005, 2079475, 10306752, 51263942, 255514355, 1275163905, 6368612302, 31821472612, 159042661905, 795019337135, 3974515030652, 19870830712482, 99348921288655
Offset: 0
Examples
For a(4)=15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1400 (first 200 terms from Vincenzo Librandi)
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto
- Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- Index entries for linear recurrences with constant coefficients, signature (11,-41,61,-30).
Crossrefs
Programs
-
GAP
List([0..25],n->Sum([0..5],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
-
Magma
I:=[1,1,2,5,15]; [n le 5 select I[n] else 11*Self(n-1)-41*Self(n-2)+61*Self(n-3)-30*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 19 2014
-
Maple
seq(add(combinat:-stirling2(n, j), j=0..5), n=0..23); # Zerinvary Lajos, Dec 04 2007 # Alternative: (x*(x*(x*(11*x-37)+32)-10)+1)/(x*(x*(x*(30*x-61)+41)-11)+1): series(%, x, 32): seq(coeff(%, x, n), n=0..23); # Peter Luschny, Nov 05 2018
-
Mathematica
CoefficientList[Series[(1 - 10 x + 32 x^2 - 37 x^3 + 11 x^4)/((x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 19 2014 *) LinearRecurrence[{11,-41,61,-30},{1,1,2,5,15},30] (* Harvey P. Dale, Feb 25 2018 *) Table[Sum[StirlingS2[n, k], {k, 0, 5}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *) CoefficientList[Series[1/120 (44 + 45 E^x + 20 E^(2 x) + 10 E^(3 x) + E^(5 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Nov 06 2018 *)
-
PARI
a(n) = sum(k=0,5, stirling(n, k, 2) ); \\ Joerg Arndt, Apr 18 2014
Formula
a(n) = Sum_{k=0..5} Stirling2(n, k).
a(n) = (5^n + 10*3^n + 20*2^n + 45)/5! for n >= 1. - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For c=5, a(n) = c^n/c! + Sum_{k=0..c-2} (k^n/k!*(Sum_{j=2..c-k} (-1)^j/j!)).
a(n) = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! if c > 1; g(k, c) = g(k-1, c-1)/k if c > 1, 2 <= k <= c and n >= 1. (End)
a(n+1) is the top entry of the vector M^n*[1,1,1,1,1,0,0,0,...], where M is an infinite bidiagonal matrix with M(r,r+1)=1 in the superdiagonal and M(r,r)=r, r>=1 as the main diagonal, and the rest zeros. The n-th power of the matrix is multiplied from the right with a column vector starting with 5 1's. - Gary W. Adamson, Jun 24 2011
G.f.: (1 - 10x + 32x^2 - 37x^3 + 11x^4)/((1 - x)*(1 - 2x)*(1 - 3x)*(1 - 5x)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Oct 30 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=5. - Robert A. Russell, Apr 25 2018
E.g.f.: (1/120)*(44 + 45*exp(x) + 20*exp(2*x) + 10*exp(3*x) + exp(5*x)). - Stefano Spezia, Nov 06 2018
Extensions
a(0)=1 prepended by Robert A. Russell, Nov 06 2018
Comments