cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000453 Stirling numbers of the second kind, S(n,4).

Original entry on oeis.org

1, 10, 65, 350, 1701, 7770, 34105, 145750, 611501, 2532530, 10391745, 42355950, 171798901, 694337290, 2798806985, 11259666950, 45232115901, 181509070050, 727778623825, 2916342574750, 11681056634501, 46771289738810, 187226356946265, 749329038535350
Offset: 4

Views

Author

Keywords

Comments

Given a set {1,2,3,4}, a(n) is the number of occurrences where the first 2 comes after the first '1', the first '3' after the first '2' and the first '4' after the first '3' in a list of n+3. For example, a(1): 1234; a(2): 11234, 12134, 12314, 12341, 12234, 12324, 12342, 12334, 12343, 12344. Related to the cereal box problem. - Kevin Nowaczyk, Aug 02 2007
a(n) is the number of partitions of [n] into 4 nonempty subsets. - Enrique Navarrete, Aug 27 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008277 (Stirling2 triangle), A016269, A056280 (Mobius transform).

Programs

Formula

G.f.: x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
E.g.f.: (exp(x)-1)^4/4!.
a(n) = (4^n - 4*3^n + 6*2^n - 4)/24. - Kevin Nowaczyk, Aug 02 2007
a(n) = det(|s(i+4,j+3)|, 1 <= i,j <= n-4), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4). - Wesley Ivan Hurt, Oct 10 2021

A137651 Triangle read by rows: T(n,k) is the number of primitive (aperiodic) word structures of length n using exactly k different symbols.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 15, 25, 10, 1, 0, 27, 89, 65, 15, 1, 0, 63, 301, 350, 140, 21, 1, 0, 120, 960, 1700, 1050, 266, 28, 1, 0, 252, 3024, 7770, 6951, 2646, 462, 36, 1, 0, 495, 9305, 34095, 42524, 22827, 5880, 750, 45, 1, 0, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 01 2008

Keywords

Comments

Row sums = A082951: (1, 1, 4, 13, 51, 197, ...).

Examples

			First few rows of the triangle are:
  1;
  0,   1;
  0,   3,   1;
  0,   6,   6,    1;
  0,  15,  25,   10,    1;
  0,  27,  89,   65,   15,   1;
  0,  63, 301,  350,  140,  21,  1;
  0, 120, 960, 1700, 1050, 266, 28, 1;
  ...
From _Andrew Howroyd_, Apr 03 2017: (Start)
Primitive word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba, abb; abc => 3 + 1
n=4: aaab, aaba, aabb, abaa, abba, abbb => 6 (k=2)
     aabc, abac, abbc, abca, abcb, abcc => 6 (k=3)
(End)
		

Crossrefs

Columns 2-6 are A056278 (or A000740), A056279, A056280, A056281, A056282.
Row sums are A082951.

Programs

  • Mathematica
    rows = 10; t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0]; A054525 = Array[t, {rows, rows}]; A008277 = Array[StirlingS2, {rows, rows}]; T = A054525 . A008277; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017 *)
  • PARI
    T(n,k)={sumdiv(n, d, moebius(n/d)*stirling(d, k, 2))} \\ Andrew Howroyd, Aug 09 2018
    
  • Sage
    # uses[DivisorTriangle from A327029]
    # Computes an additional column (1,0,0,...)
    # at the left hand side of the triangle.
    DivisorTriangle(moebius, stirling_number2, 10) # Peter Luschny, Aug 24 2019

Formula

A054525 * A008277 as infinite lower triangular matrices. A054525 = Mobius transform, A008277 = Stirling2 triangle.
T(n,k) = Sum{d|n} mu(n/d) * Stirling2(d, k). - Andrew Howroyd, Aug 09 2018

Extensions

Name changed and a(46)-a(66) from Andrew Howroyd, Aug 09 2018
Showing 1-2 of 2 results.