cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056469 Number of elements in the continued fraction for Sum_{k=0..n} 1/2^2^k.

Original entry on oeis.org

2, 3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0

Views

Author

Benoit Cloitre, Dec 07 2002

Keywords

Comments

Let f_1(x) := 1 - sqrt(1 - x^2) = 2*x^2 + 2*x^4 + 4*x^6 + ... and for n>1 let f_n(x) := f_{n-1}(f_1(x)) = x^(2^n)*(2 + 2^n*x^2 + 2^n*a(n-1)*x^4 + ...). - Michael Somos, Jun 29 2023

Examples

			G.f. = 2 + 3*x + 4*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 34*x^6 + ... - _Michael Somos_, Jun 29 2023
		

Crossrefs

Cf. A007400. Apart from initial term, same as A052548. See also A089985.

Programs

  • Magma
    [Floor(2^(n-1)+2): n in [0..60]]; // Vincenzo Librandi, Sep 21 2011
    
  • Mathematica
    LinearRecurrence[{3,-2},{2,3,4},40] (* Harvey P. Dale, Apr 23 2015 *)
    a[ n_] := If[n < 0, 0, Floor[2^n/2] + 2]; (* Michael Somos, Jun 29 2023 *)
  • PARI
    {a(n) = if(n<0, 0, 2^n\2 + 2)}; /* Michael Somos, Jun 29 2023 */
  • Sage
    [floor(gaussian_binomial(n,1,2)+3) for n in range(-1,32)] # Zerinvary Lajos, May 31 2009
    

Formula

a(0)=2; for n > 0, a(n) = 2^(n-1) + 2 = A052548(n-1) + 2.
a(n) = floor(2^(n-1) + 2). - Vincenzo Librandi, Sep 21 2011
From Colin Barker, Mar 22 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2.
G.f.: -(x^2+3*x-2) / ((x-1)*(2*x-1)). (End)
E.g.f.: exp(x)*(2 + sinh(x)). - Stefano Spezia, Oct 19 2023