A052548
a(n) = 2^n + 2.
Original entry on oeis.org
3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..240
- Nicholas R. Beaton, Philippe Flajolet, and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, arXiv:1011.6195 [math.CO], Nov 29, 2010.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 485
- Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #6 with K=2. [Annotated and scanned copy]
- Eric Weisstein's World of Mathematics, Bertrand's Postulate
- Index entries for sequences generated by sieves
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Apart from initial term, same as
A056469.
Cf.
A003462,
A007051,
A034472,
A024023,
A067771,
A029858,
A134931,
A115099,
A100774,
A079004,
A058481,
A100585,
A100586,
A058896,
A000918,
A173786.
-
a052548 = (+ 2) . a000079
a052548_list = iterate ((subtract 2) . (* 2)) 3
-- Reinhard Zumkeller, Sep 05 2015
-
[2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
-
spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
-
a(n)=1<Charles R Greathouse IV, Nov 20 2011
Original entry on oeis.org
2, 3, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 1
A283070
Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.
Original entry on oeis.org
4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0
-
Table[2 4^n + 2, {n, 0, 30}] (* Bruno Berselli, Feb 28 2017 *)
2 (4^Range[0, 20] + 1) (* Eric W. Weisstein, Aug 17 2017 *)
LinearRecurrence[{5, -4}, {4, 10}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
-
a(n)=2*4^n+2 \\ Charles R Greathouse IV, Feb 28 2017
-
Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
-
def a(n): return 2*4**n + 2
print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 29 2021
Entry revised by Editors of OEIS, Mar 01 2017
A159243
Number of elements in the continued fraction for Sum_{k=0..n} 1/(1+2^(2^k)).
Original entry on oeis.org
2, 4, 8, 15, 24, 41, 85, 159, 314, 651, 1267, 2496, 4977, 9889, 19731, 38945, 77356, 154693, 308051, 615768, 1229080, 2456328, 4908126, 9815038, 19620985, 39237465, 78466413, 156910438, 313788371, 627528817
Offset: 0
The partial sum for n = 3 (four terms) is: 1/3 + 1/5 + 1/17 + 1/257 = 39062/65535 expressed in continued fraction gives: {0,1,1,2,9,1,2,1,1,2,2,1,2,1,5} that has 15 elements so: a(3) = 15.
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, J. Math. Sci. Univ. Tokyo, 8 (2001), 275-316.
- N. J. A. Sloane and James A. Sellers, On non-squashing partitions, Discrete Mathematics, Vol. 294, No. 3 (2005), pp. 259-274; arXiv preprint, arXiv:math/0312418 [math.CO], 2003.
-
Table[Length[ContinuedFraction[Sum[1/(1 + 2^2^k), {k, 0, v}]]], {v, 0, 20}]
Offset corrected and a(21)-a(29) added by
Amiram Eldar, May 05 2024
Showing 1-4 of 4 results.
Comments