cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052548 a(n) = 2^n + 2.

Original entry on oeis.org

3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The most "compact" sequence that satisfies Bertrand's Postulate. Begin with a(1) = 3 = n, then 2n - 2 = 4 = n_1, 2n_1 - 2 = 6 = n_2, 2n_2 - 2 = 10, etc. = a(n), hence there is guaranteed to be at least one prime between successive members of the sequence. - Andrew S. Plewe, Dec 11 2007
Number of 2-sided prudent polygons of area n, for n>0, see Beaton, p. 5. - Jonathan Vos Post, Nov 30 2010

Crossrefs

Programs

  • Haskell
    a052548 = (+ 2) . a000079
    a052548_list = iterate ((subtract 2) . (* 2)) 3
    -- Reinhard Zumkeller, Sep 05 2015
  • Magma
    [2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
    
  • Maple
    spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Nov 20 2011
    

Formula

G.f.: (3-5*x)/((1-2*x)*(1-x)) = (3-5*x)/(1 - 3*x + 2*x^2) = 2/(1-x) + 1/(1-2*x).
a(0)=3, a(1)=4, a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A058896(n)/A000918(n), for n>0. - Reinhard Zumkeller, Feb 14 2009
a(n) = A173786(n,1), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(n)*A000918(n) = A028399(2*n), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(0)=3, a(n) = 2*a(n-1) - 2. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (2 + exp(x))*exp(x). - Ilya Gutkovskiy, Aug 16 2016

Extensions

More terms from James Sellers, Jun 06 2000

A089985 a(n) = A089709(n+1)/A089709(n).

Original entry on oeis.org

2, 3, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 1

Views

Author

Ray Chandler, Nov 21 2003

Keywords

Crossrefs

Cf. A089709.
Essentially the same as A056469.

Programs

  • Mathematica
    Join[{2,3},Rest[2^Range[40]+2]] (* Harvey P. Dale, Sep 19 2011 *)

Formula

a(n) = 2^(n-1)+2, n>2.

A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.

Original entry on oeis.org

4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0

Views

Author

Peter M. Chema, Feb 28 2017

Keywords

Comments

Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.

Crossrefs

Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).

Programs

Formula

G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017

Extensions

Entry revised by Editors of OEIS, Mar 01 2017

A159243 Number of elements in the continued fraction for Sum_{k=0..n} 1/(1+2^(2^k)).

Original entry on oeis.org

2, 4, 8, 15, 24, 41, 85, 159, 314, 651, 1267, 2496, 4977, 9889, 19731, 38945, 77356, 154693, 308051, 615768, 1229080, 2456328, 4908126, 9815038, 19620985, 39237465, 78466413, 156910438, 313788371, 627528817
Offset: 0

Views

Author

Keywords

Comments

Number of terms in the n-th partial sum of the Fermat number reciprocals.

Examples

			The partial sum for n = 3 (four terms) is: 1/3 + 1/5 + 1/17 + 1/257 = 39062/65535 expressed in continued fraction gives: {0,1,1,2,9,1,2,1,1,2,2,1,2,1,5} that has 15 elements so: a(3) = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[ContinuedFraction[Sum[1/(1 + 2^2^k), {k, 0, v}]]], {v, 0, 20}]

Extensions

Offset corrected and a(21)-a(29) added by Amiram Eldar, May 05 2024
Showing 1-4 of 4 results.