cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056469 Number of elements in the continued fraction for Sum_{k=0..n} 1/2^2^k.

Original entry on oeis.org

2, 3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0

Views

Author

Benoit Cloitre, Dec 07 2002

Keywords

Comments

Let f_1(x) := 1 - sqrt(1 - x^2) = 2*x^2 + 2*x^4 + 4*x^6 + ... and for n>1 let f_n(x) := f_{n-1}(f_1(x)) = x^(2^n)*(2 + 2^n*x^2 + 2^n*a(n-1)*x^4 + ...). - Michael Somos, Jun 29 2023

Examples

			G.f. = 2 + 3*x + 4*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 34*x^6 + ... - _Michael Somos_, Jun 29 2023
		

Crossrefs

Cf. A007400. Apart from initial term, same as A052548. See also A089985.

Programs

  • Magma
    [Floor(2^(n-1)+2): n in [0..60]]; // Vincenzo Librandi, Sep 21 2011
    
  • Mathematica
    LinearRecurrence[{3,-2},{2,3,4},40] (* Harvey P. Dale, Apr 23 2015 *)
    a[ n_] := If[n < 0, 0, Floor[2^n/2] + 2]; (* Michael Somos, Jun 29 2023 *)
  • PARI
    {a(n) = if(n<0, 0, 2^n\2 + 2)}; /* Michael Somos, Jun 29 2023 */
  • Sage
    [floor(gaussian_binomial(n,1,2)+3) for n in range(-1,32)] # Zerinvary Lajos, May 31 2009
    

Formula

a(0)=2; for n > 0, a(n) = 2^(n-1) + 2 = A052548(n-1) + 2.
a(n) = floor(2^(n-1) + 2). - Vincenzo Librandi, Sep 21 2011
From Colin Barker, Mar 22 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2.
G.f.: -(x^2+3*x-2) / ((x-1)*(2*x-1)). (End)
E.g.f.: exp(x)*(2 + sinh(x)). - Stefano Spezia, Oct 19 2023

A089709 a(1) = 1, a(2) = 2; for n>2, a(n) = sum_{r=1..n} {sum of all previous terms taken r at a time}.

Original entry on oeis.org

1, 2, 6, 36, 360, 6480, 220320, 14541120, 1890345600, 487709164800, 250682510707200, 257200255985587200, 527260524770453760000, 2160713630509319508480000, 17704887488393364052485120000
Offset: 1

Views

Author

Amarnath Murthy, Nov 14 2003

Keywords

Examples

			a(4) = [{a(1)} + {a(2)} + {a(3)}] + [{a(1) + a(2)} + {a(1) + a(3)} + {a(2) + a(3)}] + [{a(1) + a(2) + a(3)}] = 36.
		

Crossrefs

Cf. A089985.

Formula

a(n)=(2^(n-2)+2)*a(n-1), n>3. - Vladeta Jovovic, Nov 17 2003

Extensions

More terms from Ray Chandler, Nov 21 2003

A134351 Binomial transform of [1, 5, -1, 5, -1, 5, ...]. Inverse binomial transform of A134350.

Original entry on oeis.org

1, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 1

Views

Author

Gary W. Adamson, Oct 21 2007

Keywords

Examples

			a(4) = 18 = (1, 3, 3, 1) dot (1, 5, -1, 5) = (1 + 15 - 3 + 5).
		

Crossrefs

Cf. A134350.
Essentially the same as A133140, A089985, A052548.

Programs

Formula

a(n) = 2 + 2^(n+1) for n >= 2; a(1)=1. - Emeric Deutsch, Oct 24 2007
O.g.f.: (-1-3*x+6*x^2)/((1-x)*(-1+2*x)). - R. J. Mathar, Apr 02 2008

Extensions

More terms from Emeric Deutsch, Oct 24 2007
More terms from R. J. Mathar, Apr 02 2008
Showing 1-3 of 3 results.