cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A274772 Zero together with the partial sums of A056640.

Original entry on oeis.org

0, 1, 6, 24, 66, 149, 292, 520, 860, 1345, 2010, 2896, 4046, 5509, 7336, 9584, 12312, 15585, 19470, 24040, 29370, 35541, 42636, 50744, 59956, 70369, 82082, 95200, 109830, 126085, 144080, 163936, 185776, 209729, 235926, 264504, 295602, 329365, 365940, 405480, 448140, 494081, 543466, 596464, 653246, 713989, 778872, 848080, 921800, 1000225, 1083550
Offset: 0

Views

Author

Luce ETIENNE, Nov 11 2016

Keywords

Comments

I

Examples

			a(0) = 0, a(1) = 1, a(2) = 6, a(3) = 24, a(4) = 66.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-5,0,5,-4,1},{0,1,6,24,66,149},60] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)) + O(x^50))) \\ Colin Barker, Nov 11 2016

Formula

a(n) = (4*n^4+8*n^3+2*n^2+4*n+3*(1-(-1)^n))/24. Therefore :
a(2*k) = k*(k+1)*(8*k^2+1)/3, a(2*k+1) = (k+1)*(8*k^3+16*k^2+9*k+3)/3.
From Colin Barker, Nov 11 2016: (Start)
G.f.: x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>5.
(End)

A085601 a(n) = 2 * (4^n + 2^n) + 1.

Original entry on oeis.org

5, 13, 41, 145, 545, 2113, 8321, 33025, 131585, 525313, 2099201, 8392705, 33562625, 134234113, 536903681, 2147549185, 8590065665, 34360000513, 137439477761, 549756862465, 2199025352705, 8796097216513, 35184380477441
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jul 07 2003

Keywords

Comments

1. Begin with a square tile.
2. Place square tiles on each edge to form a diamond shape.
3. Count the tiles: a(0) = 5.
4. Add tiles to fill the enclosing square.
5. Go to step 2.

Crossrefs

Cf. A343175 (essentially the same).

Programs

  • Mathematica
    Table[2(4^n+2^n)+1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{5,13,41},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    first(n) = Vec((5 - 22*x + 20*x^2)/(1 - 7*x + 14*x^2 - 8*x^3) + O(x^n)) \\ Iain Fox, Dec 30 2017

Formula

From R. J. Mathar, Apr 20 2009: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(5 - 22*x + 20*x^2)/((x - 1)*(2*x - 1)*(4*x - 1)).
(End)
E.g.f.: e^x + 2*(e^(2*x) + e^(4*x)). - Iain Fox, Dec 30 2017

Extensions

Edited by Franklin T. Adams-Watters and Don Reble, Aug 15 2006

A064412 At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage.

Original entry on oeis.org

1, 5, 14, 32, 60, 103, 160, 238, 335, 459, 606, 786, 994, 1241, 1520, 1844, 2205, 2617, 3070, 3580, 4136, 4755, 5424, 6162, 6955, 7823, 8750, 9758, 10830, 11989, 13216, 14536, 15929, 17421, 18990, 20664, 22420, 24287, 26240, 28310, 30471, 32755, 35134, 37642
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2001

Keywords

Comments

Number of unit triangles at n-th stage = 3n(n-1)/2 + 1, A005448.

Examples

			a(4) = 32: 19 triangles of side 1, 10 of side 2 and 3 of side 3.
		

References

  • Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88.

Crossrefs

Cf. A056640.

Programs

  • Maple
    A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # Wesley Ivan Hurt, Jun 27 2014
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,5,14,32,60,103,160,238},50] (* Harvey P. Dale, Apr 12 2016 *)
  • PARI
    a(n)=polcoeff(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^2*(1-x^2)*(1-x^4))+x*O(x^n),n)

Formula

G.f.: (1+x+x^2)(1+2x+x^2+3x^3)/((1-x)^2(1-x^2)(1-x^4)).
a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - Len Smiley, Oct 07 2001
a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - Luce ETIENNE, Jun 27 2014

A255840 a(n) = (4*n^2 - 4*n + 1 - (-1)^n)/2.

Original entry on oeis.org

0, 1, 4, 13, 24, 41, 60, 85, 112, 145, 180, 221, 264, 313, 364, 421, 480, 545, 612, 685, 760, 841, 924, 1013, 1104, 1201, 1300, 1405, 1512, 1625, 1740, 1861, 1984, 2113, 2244, 2381, 2520, 2665, 2812, 2965, 3120, 3281, 3444, 3613, 3784, 3961, 4140, 4325, 4512
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 07 2015

Keywords

Comments

Take an n X n square grid and add unit squares along each side except for the corners --> do this repeatedly along each side with the same restriction until no squares can be added. a(n) is the total area of each figure. The perimeter, P, of each figure is given by P(n) = 4*A042963(n), n>0 (see example).
For n>0, partial sums of a(n) are in A056640.

Examples

			                                                                 _
                                                               _|_|_
                            _              _ _               _|_|_|_|_
                          _|_|_          _|_|_|_           _|_|_|_|_|_|_
              _ _       _|_|_|_|_      _|_|_|_|_|_       _|_|_|_|_|_|_|_|_
    _        |_|_|     |_|_|_|_|_|    |_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
   |_|       |_|_|       |_|_|_|      |_|_|_|_|_|_|       |_|_|_|_|_|_|_|
                           |_|          |_|_|_|_|           |_|_|_|_|_|
                                          |_|_|               |_|_|_|
                                                                |_|
   n=1        n=2          n=3             n=4                  n=5
		

Crossrefs

Cf. A000290 (squares), A002620 (quarter-squares), A042963.

Programs

  • Magma
    [(4*n^2 - 4*n + 1 - (-1)^n)/2 : n in [0..100]];
    
  • Maple
    A255840:=n->(4*n^2 - 4*n + 1 - (-1)^n)/2: seq(A255840(n), n=0..100);
  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 5 x^2)/((1 + x) (1 - x)^3), {x, 0, 50}], x]
  • PARI
    vector(100,n,(4*(n-1)^2 - 4*(n-1) + 1 + (-1)^n)/2) \\ Derek Orr, Mar 09 2015

Formula

G.f.: x*(1+2*x+5*x^2)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = A000290(n) + 4*A002620(n).
a(n) - a(n-1) = A047471(n). - Wesley Ivan Hurt, Apr 28 2017
Showing 1-4 of 4 results.