cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A168658 a(n) = ceiling(n^n/2).

Original entry on oeis.org

1, 1, 2, 14, 128, 1563, 23328, 411772, 8388608, 193710245, 5000000000, 142655835306, 4458050224128, 151437553296127, 5556003412779008, 218946945190429688, 9223372036854775808, 413620130943168382089
Offset: 0

Views

Author

Zerinvary Lajos, Dec 02 2009

Keywords

Comments

Number of functions of [n] to [n] (endofunctions of degree n) up to complement to n+1.
There is only one function, and only when n=2k-1 is odd, fixed by n+1-complement, the constant function with value k.

Examples

			Ceiling(6^6/2) = 23328.
		

Crossrefs

Cf. A000312 (all endofunctions of degree n)
Cf. A057065 (floor of n^n / 2).

Programs

  • Magma
    [Ceiling(n^n/2): n in [0..20]]; // Vincenzo Librandi, Aug 29 2011
    
  • Mathematica
    Join[{1}, Table[Ceiling[n^n/2], {n, 1, 25}]] (* G. C. Greubel, Jul 28 2016 *)
  • PARI
    a(n) = ceil(n^n/2); \\ Michel Marcus, Feb 18 2016
  • Sage
    [ceil(n^n/2) for n in range(0,21)]#
    

Formula

a(n) = ceiling(A000312(n)/2).

A057075 Table read by antidiagonals of T(n,k)=floor(n^n/k) with n,k >= 1.

Original entry on oeis.org

1, 0, 4, 0, 2, 27, 0, 1, 13, 256, 0, 1, 9, 128, 3125, 0, 0, 6, 85, 1562, 46656, 0, 0, 5, 64, 1041, 23328, 823543, 0, 0, 4, 51, 781, 15552, 411771, 16777216, 0, 0, 3, 42, 625, 11664, 274514, 8388608, 387420489, 0, 0, 3, 36, 520, 9331, 205885, 5592405, 193710244, 10000000000
Offset: 1

Views

Author

Henry Bottomley, Jul 31 2000

Keywords

Examples

			From _Seiichi Manyama_, Aug 12 2023: (Start)
Square array begins:
      1,     0,     0,     0,    0,    0, ...
      4,     2,     1,     1,    0,    0, ...
     27,    13,     9,     6,    5,    4, ...
    256,   128,    85,    64,   51,   42, ...
   3125,  1562,  1041,   781,  625,  520, ...
  46656, 23328, 15552, 11664, 9331, 7776, ... (End)
		

Crossrefs

Rows are: A000007 (essentially), A033324, A033347, A057066-A057074.
Columns include A000312 and A057065.
Leading diagonal is A000169.
Cf. A060155.

Programs

A369072 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * n * (n - k + 1)^(n - k) / 2).

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 0, 13, 9, 18, 0, 128, 72, 96, 216, 0, 1562, 800, 900, 1350, 3200, 0, 23328, 11250, 11520, 14580, 23040, 56250, 0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072, 0, 8388608, 3764768, 3483648, 3780000, 4587520, 6300000, 10450944, 26353376
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
[0] [0]
[1] [0,      0]
[2] [0,      2,      2]
[3] [0,     13,      9,     18]
[4] [0,    128,     72,     96,    216]
[5] [0,   1562,    800,    900,   1350,   3200]
[6] [0,  23328,  11250,  11520,  14580,  23040,  56250]
[7] [0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072]
		

Crossrefs

Cf. A057065 (column 1), A369027 (main diagonal).

Programs

  • Mathematica
    A369072[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k) / 2];
    Table[A369072[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
  • SageMath
    def A369072(n, k):
        return binomial(n, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k)//2
    for n in range(9): print([A369072(n, k) for k in range(n+1)])

A068595 Number of functions from {1,2,...,n} to {1,2,...,n} such that the sum of the function values is 0 mod 3.

Original entry on oeis.org

0, 2, 9, 85, 1041, 15552, 274514, 5592406, 129140163, 3333333333, 95103890203, 2972033482752, 100958368864084, 3704002275186006, 145964630126953125, 6148914691236517205, 275746753962112254725, 13115469358432179191808, 659473218553437863041326, 34952533333333333333333334
Offset: 1

Views

Author

John W. Layman, Mar 13 2002

Keywords

Comments

If the functions counted are those whose sum of values is 0 mod 2 (instead of 0 mod 3) it appears that we get A057065.
It appears that a(n) = floor((n^n)/3) for n>2.
This conjecture is false for n=8, n=14, and n=20. - Sean A. Irvine, Feb 26 2024

Crossrefs

Cf. A057065.

Extensions

a(9)-a(20) from Sean A. Irvine, Feb 26 2024
Showing 1-4 of 4 results.