cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A328363 Partial sums of A057640.

Original entry on oeis.org

1, 4, 9, 16, 26, 38, 53, 70, 90, 113, 138, 166, 197, 230, 266, 305, 346, 390, 437, 487, 540, 596, 654, 715, 779, 846, 916, 989, 1065, 1144, 1226, 1311, 1399, 1490, 1584, 1681, 1781, 1884, 1990, 2099, 2211, 2326, 2444, 2565, 2689, 2816, 2946, 3079, 3215, 3354, 3496, 3641, 3790, 3942, 4097, 4255, 4416
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2019

Keywords

Crossrefs

Programs

  • Magma
    f:=func; [&+[f(k):k in [1..n]]:n in [1..57]]; // Marius A. Burtea, Nov 18 2019

Formula

a(n) = A024916(n) + A328367(n).

A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Keywords

Comments

"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
		

References

  • Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
  • E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
  • P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
  • S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
  • J. Derbyshire, Prime Obsession, Penguin Books 2004.
  • K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
  • M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
  • D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
  • A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
  • G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
  • M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
  • P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
  • P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
  • S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
  • D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
  • K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
  • K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.

Crossrefs

Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A058303 Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

1, 4, 1, 3, 4, 7, 2, 5, 1, 4, 1, 7, 3, 4, 6, 9, 3, 7, 9, 0, 4, 5, 7, 2, 5, 1, 9, 8, 3, 5, 6, 2, 4, 7, 0, 2, 7, 0, 7, 8, 4, 2, 5, 7, 1, 1, 5, 6, 9, 9, 2, 4, 3, 1, 7, 5, 6, 8, 5, 5, 6, 7, 4, 6, 0, 1, 4, 9, 9, 6, 3, 4, 2, 9, 8, 0, 9, 2, 5, 6, 7, 6, 4, 9, 4, 9, 0, 1, 0, 3, 9, 3, 1, 7, 1, 5, 6, 1, 0, 1, 2, 7, 7, 9, 2
Offset: 2

Views

Author

Robert G. Wilson v, Dec 08 2000

Keywords

Comments

"The Riemann Hypothesis, considered by many to be the most important unsolved problem of mathematics, is the assertion that all of zeta's nontrivial zeros line up with the first two all of which lie on the line 1/2 + sqrt(-1)*t, which is called the critical line. It is known that the hypothesis is obeyed for the first billion and a half zeros." (Wagon)
We can compute 105 digits of this zeta zero as the numerical integral: gamma = Integral_{t=0..gamma+15} (1/2)*(1 - sign((RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi - n + 3/2)) where n=1 and where the initial value of gamma = 1. The upper integration limit is arbitrary as long as it is greater than the zeta zero computed recursively. The recursive formula fails at zeta zeros with indices n equal to sequence A153815. - Mats Granvik, Feb 15 2017

Examples

			14.1347251417346937904572519835624702707842571156992...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.
  • S. Wagon, "Mathematica In Action," W. H. Freeman and Company, NY, 1991, page 361.

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1: this), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor); A057641, A057640, A058209, A058210.

Programs

  • Maple
    Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=14.13)); # Iaroslav V. Blagouchine, Jun 24 2016
  • Mathematica
    FindRoot[ Zeta[1/2 + I*t], {t, 14 + {-.3, +.3}}, AccuracyGoal -> 100, WorkingPrecision -> 120]
    RealDigits[N[Im[ZetaZero[1]], 100]][[1]] (* Charles R Greathouse IV, Apr 09 2012 *)
    (* The following numerical integral takes about 9 minutes to compute *)Clear[n, t, gamma]; gamma = 1; numberofzetazeros = 1; Quiet[Do[gamma = N[NIntegrate[(1/2)*(1 - Sign[(RiemannSiegelTheta[t] + Im[Log[Zeta[I*t + 1/2]]])/Pi - n + 3/2]), {t, 0, gamma + 15}, PrecisionGoal -> 110, MaxRecursion -> 350, WorkingPrecision -> 120], 105]; Print[gamma], {n, 1, numberofzetazeros}]]; RealDigits[gamma][[1]] (* Mats Granvik, Feb 15 2017 *)
  • PARI
    solve(x=14,15,imag(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Feb 26 2012
    
  • PARI
    lfunzeros(1,15)[1] \\ Charles R Greathouse IV, Mar 07 2018

Formula

zeta(1/2 + i*14.1347251417346937904572519836...) = 0.

A057641 a(n) = floor(H(n) + exp(H(n))*log(H(n))) - sigma(n), where H(n) = Sum_{k=1..n} 1/k and sigma(n) (A000203) is the sum of the divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 4, 0, 7, 2, 7, 5, 13, 0, 17, 9, 12, 8, 23, 5, 27, 8, 21, 20, 34, 1, 33, 25, 30, 17, 46, 7, 50, 22, 40, 37, 46, 6, 62, 43, 50, 19, 70, 19, 74, 37, 46, 55, 82, 9, 79, 46, 70, 47, 95, 32, 83, 38, 81, 74, 107, 2, 112, 81, 76, 56, 102, 45, 125, 70, 103, 58, 133, 14, 138, 101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2000

Keywords

Comments

Theorem (Lagarias): a(n) is nonnegative for all n if and only if the Riemann Hypothesis is true.
Up to rank n=10^4, zeros occur only at n=1,2,4,6 and 12; ones occur at n=3 and n=24. The first occurrence of k = 0,1,2,3,... is at n = 1,3,8,-1,5,10,36,7,16,14,-1,-1,15,11,72,... where -1 means that k does not occur among the first 10^4 terms. - Robert G. Wilson v, Dec 06 2010, reformulated by M. F. Hasler, Sep 09 2011
Looking at the graph of this sequence, it appears that there is a slowly growing lower bound. It is even more apparent when larger ranges of points are computed. Numbers A176679(n+2) and A222761(n) give the (x,y) coordinates of the n-th point. - T. D. Noe, Mar 28 2013

References

  • G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{h = HarmonicNumber@n}, Floor[h + Exp@h*Log@h] - DivisorSigma[1, n]]; Array[f, 74] (* Robert G. Wilson v, Dec 06 2010 *)
  • PARI
    a(n)={my(H=sum(k=1,n,1/k)); floor(exp(H)*log(H)+H) - sigma(n)}
    list_A057641(Nmax,H=0,S=1)=for(n=S,Nmax, H+=1/n; print1(floor(exp(H)*log(H)+H) - sigma(n),","))  \\ M. F. Hasler, Sep 09 2011

Formula

a(n) = A057640(n) - A000203(n). - Omar E. Pol, Oct 25 2019

Extensions

Five more terms from Robert G. Wilson v, Dec 06 2010
I deleted some unproved assertions by Robert G. Wilson v about the presence of 0's, 1's, ... in this sequence. - N. J. A. Sloane, Dec 07 2010

A076633 Incorrect guess for index of n-th local maxima (in decreasing order) of f(k) = (sigma(k) - H_k)/(exp(H_k)log(H_k)), where H_k = 1 + 1/2 + 1/3 + ... + 1/k.

Original entry on oeis.org

12, 120, 60, 2520, 5040, 360, 24, 840, 55440, 10080
Offset: 1

Views

Author

Luke Pebody (pebodyl(AT)msci.memphis.edu), Oct 22 2002

Keywords

Comments

Lagarias showed that the Riemann Hypothesis is equivalent to the formula sigma(k) <= H_k + exp(H_k)log(H_k) for all k >= 1 with equality only when k=1. In other words f(k)<1 for all k. At first glance it seems that f(12) is the largest value of f, followed by f(120), f(60) and so on. Proving that f(12) is indeed the largest value would prove the Riemann Hypothesis. However, f(12) is not the largest value.
The terms shown are merely the maxima for "small" values of k. If the function f(k) is evaluated at colossally abundant numbers (A004490), we find that beyond the 58th colossally abundant number, which is over 10^76, the function is greater than f(12) and increasing at each subsequence colossally abundant number. Use A073751 to generate colossally abundant numbers not in A004490. - T. D. Noe, Oct 24 2002

Crossrefs

A353149 Sum of the odd-indexed terms in the n-th row of the triangle A196020.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 13, 15, 20, 19, 21, 28, 25, 27, 37, 31, 33, 44, 37, 42, 52, 43, 45, 60, 54, 51, 68, 56, 57, 83, 61, 63, 84, 67, 81, 92, 73, 75, 100, 90, 81, 113, 85, 87, 130, 91, 93, 124, 104, 114, 132, 103, 105, 143, 126, 120, 148, 115, 117, 175, 121, 123, 180, 127, 150, 173, 133, 135, 180, 175
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2022

Keywords

Comments

a(n) is the total number of steps in all odd-indexed double-staircases of the diagram of A196020 with n levels (see the example).
a(n) is also the total number of steps in all odd-indexed double-staircases of the diagram described in A335616 with n levels that have at least one step in the bottom level of the diagram.
Sigma(n) <= a(n).
The graph of the sum-of-divisors function A000203 is intermediate between the graph of this sequence and the graph of A353154 (see link). - Omar E. Pol, May 13 2022

Examples

			For n = 15 the 15th row of the triangle A196020 is [29, 13, 7, 0, 1]. The sum of the odd-indexed terms is 29 + 7 + 1 = 37, so a(15) = 37.
Illustration of a(15) = 37:
Level                                   Diagram
.                                          _
1                                        _|1|_
2                                      _|1   1|_
3                                    _|1       1|_
4                                  _|1           1|_
5                                _|1       _       1|_
6                              _|1        |1|        1|_
7                            _|1          | |          1|_
8                          _|1           _| |_           1|_
9                        _|1            |1   1|            1|_
10                     _|1              |     |              1|_
11                   _|1               _|     |_               1|_
12                 _|1                |1       1|                1|_
13               _|1                  |         |                  1|_
14             _|1                   _|    _    |_                   1|_
15            |1                    |1    |1|    1|                    1|
.
The diagram has 37 steps, so a(15) = 37.
		

Crossrefs

Programs

  • PARI
    a(n) = { my(r = A196020row(n)); sum(i = 0, (#r-1)\2, r[2*i + 1]) }
    A196020row(n) = { my(res, qc); qc = (sqrtint(8*n + 1) - 1)\2; res = vector(qc); for(i = 1, qc, cn = n - binomial(i + 1, 2); if(cn % i == 0, res[i] = 2*(cn/i) + 1 ) ); res } \\ David A. Corneth, Apr 28 2022

Formula

a(n) = A000203(n) + A353154(n).
a(n) = A209246(n) - A353154(n).

A328367 Partial sums of A057641.

Original entry on oeis.org

0, 0, 1, 1, 5, 5, 12, 14, 21, 26, 39, 39, 56, 65, 77, 85, 108, 113, 140, 148, 169, 189, 223, 224, 257, 282, 312, 329, 375, 382, 432, 454, 494, 531, 577, 583, 645, 688, 738, 757, 827, 846, 920, 957, 1003, 1058, 1140, 1149, 1228, 1274, 1344, 1391, 1486, 1518, 1601, 1639, 1720, 1794, 1901, 1903, 2015, 2096
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2019

Keywords

Crossrefs

Programs

  • Magma
    f:=func; [&+[f(k):k in [1..n]]:n in [1..62]]; // Marius A. Burtea, Nov 18 2019

Formula

a(n) = A328363(n) - A024916(n).

A337993 Numbers k such that L(k) < sigma(k) + k/Pi^2, where L(k) = floor(H(k) + exp(H(k)) * log(H(k))) and H(k) = Sum_{j=1..k} 1/j.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 5040
Offset: 1

Views

Author

Peter Luschny, Oct 15 2020

Keywords

Comments

Conjecture: This sequence is finite.

References

  • S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.

Crossrefs

Programs

  • Mathematica
    A337993Q[n_] := With[{h = HarmonicNumber[n]}, Floor[h + Exp[h]*Log[h]] < DivisorSigma[1, n] + n/Pi^2];
    Select[Range[5040], A337993Q] (* Paolo Xausa, Feb 01 2024 *)

Formula

k is a term of this sequence <==> A057640(k) < A000203(k) + k/A002388.

A353130 a(n) = floor(H(n) + exp(H(n))*log(H(n))) - n, where H(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 96, 98, 100, 102, 104, 106, 108, 110, 113, 115, 117, 119, 121, 123, 126, 128
Offset: 1

Views

Author

Omar E. Pol, Apr 24 2022

Keywords

Comments

About Lagarias's theorem and the Riemann hypothesis the graph of A057640 vs. A000203 is essentially equivalent to the graph of this sequence vs. A001065 (see Plot 2 in the Links section and A057640, A057641).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{h = HarmonicNumber[n]}, Floor[h + Exp[h]*Log[h]] - n]; Array[a, 100] (* Amiram Eldar, Apr 26 2022 *)
  • PARI
    H(n) = sum(k=1, n, 1/k)
    a(n) = floor(H(n) + exp(H(n))*log(H(n))) - n \\ Felix Fröhlich, Apr 26 2022

Formula

a(n) = A057640(n) - n.
a(n) = A057641(n) + A001065(n).
Showing 1-9 of 9 results.