A057664
Primes of the form p + 2^p where p is prime.
Original entry on oeis.org
11, 37, 618970019642690137449562201, 266998379490113760299377713271194014325338065294581596243380200977777465722580068752870260867389
Offset: 1
A057678
Primes of the form 2^p - p where p is prime.
Original entry on oeis.org
2, 5, 8179, 524269
Offset: 1
p=3 is prime, and so is 2^p - p = 8 - 3 = 5, so 5 is in the sequence. - _Michael B. Porter_, Jul 19 2016
-
a:=proc(n) if isprime(2^ithprime(n)-ithprime(n))=true then 2^ithprime(n)-ithprime(n) else fi end: seq(a(n),n=1..310); # Emeric Deutsch
-
lst={};Do[p=Prime[n];If[PrimeQ[p=2^p-p],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 28 2009 *)
Select[Table[2^p-p,{p,Prime[Range[20]]}],PrimeQ] (* Harvey P. Dale, Sep 20 2018 *)
A057663
Primes p such that p + 2^p is also a prime.
Original entry on oeis.org
3, 5, 89, 317, 701
Offset: 1
q=3, 2^3 + 3 = 11 a prime.
-
[p: p in PrimesUpTo(1000) | IsPrime(2^p+p) ] // Vincenzo Librandi, Aug 07 2010
-
Select[Prime@ Range[10^3], PrimeQ[# + 2^#] &] (* Michael De Vlieger, Nov 08 2017 *)
-
lista(nn) = forprime(p=3, nn, if(ispseudoprime(p + 2^p), print1(p, ", "))) \\ Iain Fox, Nov 13 2017
-
[n for n in (1..1000) if is_prime(n) and is_prime(2^n+n)] # G. C. Greubel, May 24 2019
Showing 1-3 of 3 results.
Comments