A155841
Primes of the form q*p+2^p where p is prime, q=3.
Original entry on oeis.org
17, 47, 149, 2081, 8231, 140737488355469, 300613450595050653169853516389035139504087366260264943450533244356122755214669880763353471793250393988087678029
Offset: 1
-
lst={};Do[p=Prime[n];If[PrimeQ[p=3*p+2^p],AppendTo[lst,p]],{n,5!}];lst
A057678
Primes of the form 2^p - p where p is prime.
Original entry on oeis.org
2, 5, 8179, 524269
Offset: 1
p=3 is prime, and so is 2^p - p = 8 - 3 = 5, so 5 is in the sequence. - _Michael B. Porter_, Jul 19 2016
-
a:=proc(n) if isprime(2^ithprime(n)-ithprime(n))=true then 2^ithprime(n)-ithprime(n) else fi end: seq(a(n),n=1..310); # Emeric Deutsch
-
lst={};Do[p=Prime[n];If[PrimeQ[p=2^p-p],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 28 2009 *)
Select[Table[2^p-p,{p,Prime[Range[20]]}],PrimeQ] (* Harvey P. Dale, Sep 20 2018 *)
A129962
Primes of the form 2^k + k.
Original entry on oeis.org
3, 11, 37, 521, 32783, 549755813927, 37778931862957161709643, 2417851639229258349412433, 618970019642690137449562201, 266998379490113760299377713271194014325338065294581596243380200977777465722580068752870260867389
Offset: 1
For k = 3, 2^3 + 3 = 11 prime, so 11 is a term.
-
[a: n in [0..400] | IsPrime(a) where a is 2^n + n]; // Vincenzo Librandi, Jul 25 2019
-
Select[Table[2^n+n,{n,600}],PrimeQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *)
-
f(n) = forstep(x=1,n,2,y=2^x+x;if(isprime(y),print1(y",")))
A155842
Primes of the form q*p+2^p where p is prime, q=5.
Original entry on oeis.org
23, 163, 137438953657, 2305843009213694257, 862718293348820473429344482784628181556388621521298319395315527976057, 19239260838083241802870625048898248928261591440656956380834127638791856333738872368854622194768025215237611325257
Offset: 1
-
lst={};Do[p=Prime[n];If[PrimeQ[p=5*p+2^p],AppendTo[lst,p]],{n,5!}];lst
Select[Table[5p+2^p,{p,Prime[Range[100]]}],PrimeQ] (* Harvey P. Dale, Nov 02 2024 *)
A155843
Primes of the form q*p+2^p where p is prime, q=9.
Original entry on oeis.org
191, 536871173, 2199023255921, 10384593717069655257060992658441209
Offset: 1
-
lst={};Do[p=Prime[n];If[PrimeQ[p=9*p+2^p],AppendTo[lst,p]],{n,5!}];lst
A057663
Primes p such that p + 2^p is also a prime.
Original entry on oeis.org
3, 5, 89, 317, 701
Offset: 1
q=3, 2^3 + 3 = 11 a prime.
-
[p: p in PrimesUpTo(1000) | IsPrime(2^p+p) ] // Vincenzo Librandi, Aug 07 2010
-
Select[Prime@ Range[10^3], PrimeQ[# + 2^#] &] (* Michael De Vlieger, Nov 08 2017 *)
-
lista(nn) = forprime(p=3, nn, if(ispseudoprime(p + 2^p), print1(p, ", "))) \\ Iain Fox, Nov 13 2017
-
[n for n in (1..1000) if is_prime(n) and is_prime(2^n+n)] # G. C. Greubel, May 24 2019
A155844
Primes of the form q*p+2^p where p is prime, q=13.
Original entry on oeis.org
47, 97, 131293, 140737488355939, 2361183241434822607771
Offset: 1
-
lst={};Do[p=Prime[n];If[PrimeQ[p=13*p+2^p],AppendTo[lst,p]],{n,5!}];lst
A155845
Primes of the form 2^p-p*q where p is prime,q=3.
Original entry on oeis.org
-2, 17, 107, 524231, 8388539, 162259276829213363391578010287807
Offset: 1
-
q=3;lst={};Do[p=Prime[n];If[PrimeQ[p=2^p-p*q],AppendTo[lst,p]],{n,5!}];lst
Select[2^#-3#&/@Prime[Range[900]],PrimeQ] (* Harvey P. Dale, Dec 09 2013 *)
A057665
Numbers k such that prime(k) + 2^prime(k) is prime.
Original entry on oeis.org
2, 3, 24, 66, 126
Offset: 1
-
Select[Range[10^3], PrimeQ[# + 2^#] &@ Prime@ # &] (* Michael De Vlieger, Oct 26 2017 *)
-
isok(n) = isprime(prime(n) + 2^prime(n)); \\ Michel Marcus, Dec 19 2013
A155846
Primes of the form 2^p-p*q where p is prime,q=5.
Original entry on oeis.org
-7, 7, 1993, 130987, 536870767, 9007199254740727
Offset: 1
-
q=5;lst={};Do[p=Prime[n];If[PrimeQ[p=2^p-p*q],AppendTo[lst,p]],{n,5!}];lst
Select[Table[2^p-5p,{p,Prime[Range[50]]}],PrimeQ] (* Harvey P. Dale, Jul 02 2018 *)
Showing 1-10 of 15 results.
Comments