Original entry on oeis.org
86, 19, 20, 37, 127, 336, 748, 1691, 3088, 11761, 41524, 95388, 316706, 712386
Offset: 2
- C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 158.
A057794
(Integer nearest R(10^n)) - pi(10^n), where pi(x) is the number of primes <= x, R(x) = Sum_{ k>=1 } (mu(k)/k * li(x^(1/k))) and li(x) is the Cauchy principal value of the integral from 0 to x of dt/log(t).
Original entry on oeis.org
1, 1, 0, -2, -5, 29, 88, 97, -79, -1828, -2318, -1476, -5773, -19200, 73218, 327052, -598255, -3501366, 23884333, -4891825, -86432204, -127132665, 1033299853, -1658989719, -1834784714, -17149335456, -17535487934, -174760519827
Offset: 1
- John H. Conway and R. K. Guy, "The Book of Numbers," Copernicus, an imprint of Springer-Verlag, NY, 1996, page 146.
- M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 90.
-
R[x_] := Sum[N[LogIntegral[x^(1/k)]*MoebiusMu[k]/k, 36], {k, 1, 1000}]; a[n_] := Abs[Round[R[10^n]-PrimePi[10^n]]]
gram[x_] := 1+Sum[N[Log[x]^k/(k*k!*Zeta[k+1]), 100], {k, 1, 1000}]; a[n_] := Abs[Round[gram[10^n]-PrimePi[10^n]]]
(* From version 7 on : *) a[n_] := Round[RiemannR[10^n]-PrimePi[10^n]] (* Jean-François Alcover, Sep 17 2012 *)
-
A057794=vector(#A006880,i,round(1+suminf(k=1, log(10^i)^k/(k*k!*zeta(k+1)))-A006880[i])) \\ - M. F. Hasler, Feb 26 2008
The value of a(23) is not known at present, I believe. -
N. J. A. Sloane, Mar 17 2008
A106313
Differences between the prime-counting function and Gauss's approximation for number of primes < 10^n.
Original entry on oeis.org
1, 4, 9, 16, 37, 129, 338, 753, 1700, 3103, 11587, 38262, 108970, 314889, 1052618, 3214631, 7956588, 21949554, 99877774, 222744643, 597394253, 1932355207, 7250186215, 17146907277, 55160980938, 155891678120, 508666658005, 1427745660373, 4551193622463
Offset: 1
Given x = 10^4, pi(x) = 1229, Gauss's approximation = 1245. Thus a(4) = 1245 - 1229 = 16.
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
-
Table[Round[Integrate[1/Log[t],{t,2,10^n}]]-PrimePi[10^n],{n,27}] (* James C. McMahon, Feb 01 2024 *)
A215663
Floor(R(10^n)) - pi(10^n), where pi(x) is the number of primes <= x, R(x) = Sum_{ k>=1 } ((mu(k)/k) * li(x^(1/k))) and li(x) is the Cauchy principal value of the integral from 0 to x of dt/log(t).
Original entry on oeis.org
0, 0, 0, -3, -5, 29, 88, 96, -79, -1828, -2319, -1476, -5774, -19201, 73217, 327052, -598255, -3501366, 23884333, -4891825, -86432205, -127132665, 1033299853, -1658989720, -1834784715, -17149335456, -17535487935, -174760519828
Offset: 1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 146.
-
R[x_] := Sum[N[LogIntegral[x^(1/k)]*MoebiusMu[k]/k, 36], {k, 1, 1000}]; a[n_] := Floor[R[10^n]-PrimePi[10^n]]
a[n_] := Floor[RiemannR[10^n] - PrimePi[10^n]] (* Eduard Roure Perdices, Apr 16 2021 *)
A223167
Difference between nearest integer to (Li(10^n)-Li(3)) and pi(10^n), where Li(10^n)-Li(3) = integral(3.. 10^n, dt/log(t)) (A223166) and pi(10^n) = number of primes <= 10^n (A006880).
Original entry on oeis.org
0, 3, 7, 15, 36, 127, 337, 752, 1699, 3101, 11585, 38261, 108969, 314888, 1052616, 3214630, 7956587, 21949553, 99877773, 222744641, 597394252, 1932355206, 7250186214, 17146907276, 55160980937, 155891678119, 508666658004, 1427745660372
Offset: 1
-
a[n_] := Round[LogIntegral[10^n] - LogIntegral[3]] - PrimePi[10^n]; Table[a[n], {n, 1, 14}]
-
a(n)=round(eint1(-log(3))-eint1(-n*log(10)))-primepi(10^n) \\ Charles R Greathouse IV, May 03 2013
A058290
Rounded difference between 10^n/(log(10^n) - A) and pi(10^n), where A is Legendre's constant and pi is the prime counting function.
Original entry on oeis.org
-1, 4, 3, 4, 2, -4, 45, 561, 6549, 69985, 690493, 6545056, 60615397, 555560046, 5070271362, 46223804313, 421692578206, 3853431791690, 35289854434775, 323979090116197, 2981921009910364, 27516571651291205, 254562416350667928
Offset: 0
- Jan Gullberg, "Mathematics, From the Birth of Numbers", W. W. Norton and Company, NY and London, 1997, page 81.
-
Table[ Round[ 10^n /(Log[10^n] - 1.08366) - PrimePi[10^n] ], {n, 0, 13} ]
-
{A006880_vec = [0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290, 1925320391606803968923]} \\ Edited by M. F. Hasler, Dec 03 2018
{default(realprecision, 100); t=log(10); for (n=0, 23, write("b058290.txt", n, " ", round(10^n/(n*t - 1.08366)) - A006880_vec[n+1]))} \\ Harry J. Smith, Jun 22 2009
-
A058290(n)={10^n\/(n*log(10)-1.08366)-A006880(n)} \\ with A006880(n)=primepi(10^n) and/or precomputed values for n > 10. - M. F. Hasler, Dec 03 2018
A225138
Difference between pi(10^n) and nearest integer to (4*((S(n))^(n-1))) where pi(10^n) = number of primes <= 10^n (A006880) and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (A225137).
Original entry on oeis.org
0, 0, 0, 1, 0, -31, -35, 193, 0, -13318, -153006, -828603, 957634, 86210559, 1293461717, 13497122460, 107995231864, 586760026575, -1942949, -54073500144915, -897247302459084, -9393904607181950, -54876701507521387, 379565456321952448
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A227694
Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).
Original entry on oeis.org
0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A229256
Difference between PrimePi(10^n) and its approximation by A229255(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
Cf.
A006880,
A229255,
A225137,
A215663,
A057793,
A057794,
A223166,
A223167,
A190802,
A106313,
A057752,
A227693,
A052435.
Showing 1-9 of 9 results.
Comments