cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A228065 Difference of consecutive integers nearest to (10^n)/log(10^n) (A057834).

Original entry on oeis.org

4, 18, 123, 941, 7600, 63696, 548039, 4808260, 42826261, 386039540, 3513837172, 32243075171, 297881471562, 2768030763779, 25850862018051, 242481085729315, 2283239371770773, 21572797793887019, 204448571890127322, 1942896366409284492
Offset: 1

Views

Author

Vladimir Pletser, Aug 06 2013

Keywords

Comments

This sequence gives an approximation of the number of primes with n digits (A006879); see A228066.
Note that A057834(n) = (10^n)/log(10^n) is not defined for n=0. Its value is set arbitrarily to 0.

Examples

			For n = 1, A057834(1) - A057834(0) = 4-0 = 4.
		

Crossrefs

Formula

a(n) = A057834(n) - A057834(n-1).

A057835 Difference between pi(10^n) and the integer nearest to 10^n / log(10^n).

Original entry on oeis.org

0, 3, 23, 143, 906, 6116, 44158, 332774, 2592592, 20758029, 169923159, 1416705193, 11992858452, 102838308636, 891604962452, 7804289844393, 68883734693928, 612483070893536, 5481624169369961, 49347193044659702, 446579871578168707, 4060704006019620994, 37083513766578631309, 339996354713708049069, 3128516637843038351228
Offset: 1

Views

Author

Robert G. Wilson v, Nov 08 2000

Keywords

References

  • John H. Conway and R. K. Guy, "The Book of Numbers," Copernicus, an imprint of Springer-Verlag, NY, 1995, Page 146.

Programs

  • Mathematica
    Table[ PrimePi[10^n] - Round[ N[ 10^n/Log[ 10^n ] ] ], {n, 1, 13} ]
  • PARI
    a(n)=primepi(10^n)-round(10^n/log(10^n)) \\ Charles R Greathouse IV, Mar 22 2015

Formula

a(n) = A006880(n) - A057834(n). - Henry Bottomley, Aug 10 2005
a(n) ~ 10^n/(n log 10)^2. - Charles R Greathouse IV, Mar 22 2015

Extensions

More terms from Jud McCranie, Jun 21 2005
Corrected and extended by Henry Bottomley, Aug 10 2005
a(22) to a(25) from Vladimir Pletser, Aug 10 2013

A228066 a(n) = A006879(n) - A228065(n).

Original entry on oeis.org

0, 3, 20, 120, 763, 5210, 38042, 288616, 2259818, 18165437, 149165130, 1246782034, 10576153259, 90845450184, 788766653816, 6912684881941, 61079444849535, 543599336199608, 4869141098476425, 43865568875289741, 397232678533509005, 3614124134441452287
Offset: 1

Views

Author

Vladimir Pletser, Aug 06 2013

Keywords

Comments

Difference between the number of primes with n digits (A006879) and the difference of consecutive integers nearest to (10^n)/log(10^n) (see A228065).
The sequence A006879(n) is always > A228065(n) for 1 <= n <= 28.
The sequence (A228065) provides exactly the first value of pi(10^n)- pi(10^(n-1)) for n = 1, and yields an average relative difference in absolute value, i.e., average(abs(A228066(n))/(A006879(n))) = 0.0436296... for 1 <= n <= 28.
Note that A057834(n) = 10^n/log(10^n) is not defined for n = 0; its value is set arbitrarily to 0. - Updated by Eduard Roure Perdices, Apr 18 2021

Crossrefs

Formula

a(n) = A006879(n) - A228065(n).

A058289 Integer nearest 10^n/(log(10^n) - 1.08366).

Original entry on oeis.org

-1, 8, 28, 172, 1231, 9588, 78543, 665140, 5768004, 50917519, 455743004, 4124599869, 37668527415, 346621096885, 3210012022164, 29890794226982, 279660033612131, 2627410589445923, 24775244142175635, 234381646366460804
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"Adrien-Marie Legendre in 1778 published his work 'Essai sur la théorie des nombres' where he proposed a modified form of the first approximation, pi(n) ~ n/ln n." (Gullberg)

References

  • Jan Gullberg, "Mathematics, From the Birth of Numbers," W. W. Norton and Company, NY and London, 1997, page 80.

Crossrefs

Programs

  • Mathematica
    Table[ Round[ 10^n /(Log[10^n] - 1.08366) ], {n, 0, 22} ]
  • PARI
    { default(realprecision, 1000); t=log(10); for (n=0, 500, write("b058289.txt", n, " ", round(10^n/(n*t - 1.08366))); ); } \\ Harry J. Smith, Jun 22 2009

Extensions

Corrected some terms. - Harry J. Smith, Jun 22 2009

A193257 Floor((10^n)/(log(10^n) - 1)).

Original entry on oeis.org

7, 27, 169, 1217, 9512, 78030, 661458, 5740303, 50701542, 454011971, 4110416300, 37550193649, 345618860220, 3201414635780, 29816233849000, 279007258230819, 2621647966812031, 24723998785919976, 233922961602470390, 2219671974013732243
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 19 2011

Keywords

Comments

lim n -> infinity (log(n) - n/pi(n)) = 1, where pi(n) is the prime counting function.

Examples

			a(2) = 27 because (10^2)/(log(10^2) - 1) = 27.7379415786....
		

References

  • A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.

Crossrefs

Another version of A226744.

Programs

  • Magma
    [Floor(10^n/(Log(10^n)-1)) : n in [1..20]]
    
  • Mathematica
    Table[Floor[10^n/(Log[10^n] - 1)], {n, 20}]
  • PARI
    for(n=1, 20, print1(floor(10^n/(log(10^n)-1)), ", "))
    
  • PARI
    a(n)=10^n\(n*log(10)-1) \\ Charles R Greathouse IV, Jul 30 2011

Formula

a(n) = floor((10^n)/(log(10^n) - 1)).

A226744 Round((10^n)/(log(10^n) - 1)).

Original entry on oeis.org

8, 28, 169, 1218, 9512, 78030, 661459, 5740304, 50701542, 454011971, 4110416301, 37550193650, 345618860221, 3201414635781, 29816233849001, 279007258230820, 2621647966812031, 24723998785919976, 233922961602470391, 2219671974013732243
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2013

Keywords

Examples

			a(2) = 28 because (10^2)/(log(10^2) - 1) = 27.7379415786....
		

References

  • A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.

Crossrefs

Another version of A193257.

Programs

  • Mathematica
    Table[Round[10^n/(Log[10^n] - 1)], {n, 20}]
  • PARI
    for(n=1, 20, print1(round(10^n/(log(10^n)-1)), ", "));

Formula

a(n) = round((10^n)/(log(10^n) - 1)).

A226945 Integer nearest f(10^n), where f(x) = Sum of ( mu(k) * H(k)/k^(3/2) * Integral Log(x^(1/k)) ) for k = 1 to infinity, where H(k) is the harmonic number sum_{i=1..k} 1/i.

Original entry on oeis.org

4, 25, 168, 1226, 9585, 78521, 664652, 5761512, 50847348, 455050385, 4118051652, 37607908133, 346065524108, 3204941711340, 29844570436484, 279238341185832, 2623557156537070, 24739954282695698, 234057667295619287, 2220819602542218793
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2013

Keywords

Comments

The sequence gives exactly the values of pi(10^n) for n = 1 to 3.
A228724 gives the difference between A006880 and this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := Sum[N[MoebiusMu[k]*HarmonicNumber[k]/k^(3/2)*LogIntegral[n^(1/k)], 50], {k, 5!}]; Table[Round[f[10^n]], {n, 20}]

A135325 Smallest n such that pi(n)=Floor[n/log((n-pi(n))/e)].

Original entry on oeis.org

59473, 59671, 59699, 59707, 59729, 59743, 59747, 59755, 59771, 59779, 59791, 59799, 59810, 152993, 153001, 155801, 155809, 155821, 155833, 155849, 155853, 155877, 155889, 155913, 155925, 210533, 211891, 211933, 211943, 211949, 211969
Offset: 1

Views

Author

Manuel Valdivia, Dec 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    j=0;Do[k=Floor[n/Log[(n-PrimePi[n])/E]];If[PrimePi[n]==k&&k>j,Print[n];j=k],{n,1,10^7,1}]
Showing 1-8 of 8 results.