A058031 a(n) = n^4 - 2*n^3 + 3*n^2 - 2*n + 1, the Alexander polynomial for reef and granny knots.
1, 1, 9, 49, 169, 441, 961, 1849, 3249, 5329, 8281, 12321, 17689, 24649, 33489, 44521, 58081, 74529, 94249, 117649, 145161, 177241, 214369, 257049, 305809, 361201, 423801, 494209, 573049, 660969, 758641, 866761, 986049, 1117249, 1261129, 1418481, 1590121
Offset: 0
References
- Richard Courant and Herbert Robbins, What Is Mathematics?, 2nd Ed. 1996, pp. 501-505.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^2 - n + 1)^2 : n in [0..50]]; // Wesley Ivan Hurt, Jun 19 2014
-
Maple
A058031:=n->(n^2 - n + 1)^2; seq(A058031(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
-
Mathematica
Table[(n^2 - n + 1)^2, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 19 2014 *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 1, 9, 49, 169}, 50] (* Vincenzo Librandi, Apr 11 2017 *)
-
PARI
a(n)=n^4-2*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Jun 19 2014
-
PARI
lista(nn) = for(n=0, nn, print1((n^2-n+1)^2, ", ")); \\ Altug Alkan, Apr 16 2016
-
Python
def a(n): return n**4 - 2*n**3 + 3*n**2 - 2*n + 1 # Indranil Ghosh, Apr 06 2017
Formula
G.f.: (1-4*x+14*x^2+4*x^3+9*x^4)/(1-x)^5. - Colin Barker, Jan 17 2012
a(n) = (n^2-n+1)^2. - Carmine Suriano, Feb 16 2012
a(n) = (n-2)*(n-1)*n*(n+1) + (2*n-1)^2. - Charlie Marion, Apr 11 2013
a(n) = A002061(n)^2. - Richard R. Forberg, Sep 03 2013
a(n) = (n*(n-1))^2 + (n-1)^2 + n^2, sum of three squares. - Carmine Suriano, Jun 16 2014
E.g.f.: exp(x)*(1 + 4*x^2 + 4*x^3 + x^4). - Ilya Gutkovskiy, Apr 16 2016
a(n) = (n-1)^4 + 2*(n-1)^3 + 3*(n-1)^2 + 2*(n-1) + 1. - Bruce J. Nicholson, Apr 07 2017
Extensions
Name corrected by Andrey Zabolotskiy, Nov 21 2017
Comments