cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058031 a(n) = n^4 - 2*n^3 + 3*n^2 - 2*n + 1, the Alexander polynomial for reef and granny knots.

Original entry on oeis.org

1, 1, 9, 49, 169, 441, 961, 1849, 3249, 5329, 8281, 12321, 17689, 24649, 33489, 44521, 58081, 74529, 94249, 117649, 145161, 177241, 214369, 257049, 305809, 361201, 423801, 494209, 573049, 660969, 758641, 866761, 986049, 1117249, 1261129, 1418481, 1590121
Offset: 0

Views

Author

Jason Earls, Nov 21 2000

Keywords

Comments

"The standard knot invariant, in the pre-Jones era of knot theory, was the Alexander polynomial, invented in 1926. This assigns to each knot a polynomial in a variable t, which can be calculated by following a standard procedure." See Courant and Robbins, p. 503.
First differences are in A105374. - Wesley Ivan Hurt, Apr 18 2016

References

  • Richard Courant and Herbert Robbins, What Is Mathematics?, 2nd Ed. 1996, pp. 501-505.

Crossrefs

Programs

Formula

G.f.: (1-4*x+14*x^2+4*x^3+9*x^4)/(1-x)^5. - Colin Barker, Jan 17 2012
a(n) = (n^2-n+1)^2. - Carmine Suriano, Feb 16 2012
3*a(n+3) = A062938(n) + A062938(n+1) + A062938(n+2). - Bruno Berselli, Feb 16 2012
a(n) = (n-2)*(n-1)*n*(n+1) + (2*n-1)^2. - Charlie Marion, Apr 11 2013
a(n) = A002061(n)^2. - Richard R. Forberg, Sep 03 2013
a(n) = (n*(n-1))^2 + (n-1)^2 + n^2, sum of three squares. - Carmine Suriano, Jun 16 2014
a(n) = A002378(A002378(n-1))+A002378(n-1)+1, where A002378(-1)=0. [Bruno Berselli, May 28 2015]
E.g.f.: exp(x)*(1 + 4*x^2 + 4*x^3 + x^4). - Ilya Gutkovskiy, Apr 16 2016
a(n) = (n-1)^4 + 2*(n-1)^3 + 3*(n-1)^2 + 2*(n-1) + 1. - Bruce J. Nicholson, Apr 07 2017
For n>0 a(n) = A002522(n)*A002522(n-1) - 1. - Bruce J. Nicholson, Jul 02 2017

Extensions

Name corrected by Andrey Zabolotskiy, Nov 21 2017