cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007570 a(n) = F(F(n)), where F is a Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557
Offset: 0

Views

Author

Keywords

Comments

a(20) is approximately 2.830748520089124 * 10^1413, much too large to include even in the b-file. - Alonso del Arte, Apr 30 2020
Let M(0) denote the 2 X 2 identity matrix, and let M(1) = [[0, 1], [1, 1]]. Let M(n) = M(n-2) * M(n-1). Then a(n) is equal to both the (1, 2)-entry and the (2, 1)-entry of M(n). - John M. Campbell, Jul 02 2021
This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 06 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(F(n)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}]
    Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
  • PARI
    a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Python
    from sympy import fibonacci
    def a(n): return fibonacci(fibonacci(n))
    print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
  • Sage
    [fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
    
  • Scala
    val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 }
    val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply()
    (0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
    

Formula

a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - Carmine Suriano, Jan 24 2011
Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - Amiram Eldar, Oct 30 2020
Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - Amiram Eldar, Apr 07 2021
Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - Amiram Eldar, Feb 02 2022

Extensions

One more term from Harvey P. Dale, May 05 2012

A274996 a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2016

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; r[1, 2]
        end:
    a:= n-> (h-> F(h$2))(F(F(n))):
    seq(a(n), n=1..15);

Formula

a(n) = A058051(n) mod A007570(n).

A262361 a(n) = L(L(L(n))), where L(n) are Lucas numbers A000032.

Original entry on oeis.org

4, 1, 7, 29, 1149851, 387739824812222466915538827541705412334749
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2016

Keywords

Comments

a(6) = 3393011755..4322744978 has 1208 decimal digits and a(7) = 4437405101..8830136999 has 240305 decimal digits.

Crossrefs

Programs

  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]:
    a:= n-> L(L(L(n))):
    seq(a(n), n=0..5);
  • Mathematica
    A262361 = Nest[LucasL, #, 3] &; Array[A262361, 6, 0] (* JungHwan Min, Nov 09 2016 *)
  • Python
    from sympy import lucas as L
    def a(n):  return L(L(L(n)))
    print([a(n) for n in range(6)]) # Michael S. Branicky, Apr 01 2021

A273400 a(n) = Catalan(Catalan(Catalan(n))).

Original entry on oeis.org

1, 1, 2, 39044429911904443959240
Offset: 0

Views

Author

Waldemar Puszkarz, May 21 2016

Keywords

Comments

a(4) has 1610164 digits and it is thus too large to be included.
Conjecture. The number of digits of a(n) grows asymptotically faster than Catalan(n), i.e., only a finite number of terms of a(n) has the number of digits less than the value of Catalan(n).
This also appears to be true for the Fibonacci sequence (A000045) and the sequence of powers of 2 (A000079): it takes two additional iterations of these sequences for the number of digits of these iterated sequences to grow faster than the corresponding original sequences. However, it appears that it takes only one additional iteration of the factorial (A000142) for this to happen.
The number of digits of a(n) grows asymptotically faster than Fibonacci(n), but that is already true for Catalan(Catalan(n)) (A273399).

Examples

			For n = 2, a(2) = Catalan(Catalan(Catalan(2))) = Catalan(Catalan(2)) = Catalan(2) = 2 as Catalan(2) = 2.
		

Crossrefs

Cf. A000108 (Catalan), A273399 (Catalan(Catalan(n))), A058051.

Programs

  • Maple
    a:= ((n-> binomial(2*n, n)/(n+1))@@3):
    seq(a(n), n=0..3);  # Alois P. Heinz, May 27 2025
  • Mathematica
    CatalanNumber[CatalanNumber[CatalanNumber[Range[0, 3]]]]
  • PARI
    for(n=0, 3, cn=binomial(2*n, n)/(n+1); cn2=binomial(2*cn, cn)/(cn+1); cn3=binomial(2*cn2, cn2)/(cn2+1); print1(cn3 ", "))

Formula

a(n) = A000108(A000108(A000108(n))).
Showing 1-4 of 4 results.