cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A132585 Numbers k such that sigma(k)-k-1 divides sigma(k+1)-k-2, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

25, 49, 799, 899, 32399, 292681, 1492995736325809
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k+1 is a prime than sigma(k+1)-k-2=0. Therefore the ratio with sigma(k)-k-1 is equal to zero. Is this sequence finite?
a(7) <= 1492995736325809. [From Donovan Johnson, Aug 31 2008]
a(7) > 10^13. - Giovanni Resta, Jul 11 2013
No other terms < 2.7*10^15. - Jud McCranie, Jul 26 2025

Examples

			k=25 -> sigma(25)= 1+5+25 -> sigma(k)-k-1=5
k+1=26 -> sigma(26)= 1+2+13+26 -> sigma(k+1)-k-2=2+13=15
15/5 = 3 (integer > 0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i)-i-1>0 then a:=(sigma(i+1)-i-2)/(sigma(i)-i-1); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(6) from Donovan Johnson, Aug 31 2008
a(7) by Jud McCranie, Jul 26 2025

A132586 Numbers k such that sigma(k+1)-k-2 divides sigma(k)-k-1, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

8, 24, 8925, 32445, 118540859325
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k is a prime than sigma(k)-k-1=0. Therefore the ratio with sigma(k+1)-k-2 is equal to zero. Is this sequence finite?
a(6), if it exists, is larger than 10^13. - Giovanni Resta, Jul 13 2015
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			n=8 -> sigma(8)=1+2+4+8 -> sigma(n)-n-1=2+4=6.
n+1=9 -> sigma(9)=1+3+9 -> sigma(n+1)-n-2=3.
6/3 = 2 (integer >0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i+1)-i-2>0 then a:=(sigma(i)-i-1)/(sigma(i+1)-i-2); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(5) from Donovan Johnson, Aug 31 2008

A340713 Numbers k such that sigma(k+1) = 4 * sigma(k).

Original entry on oeis.org

37033919, 141162839, 264995639, 596672999, 606523679, 630777839, 791656319, 920424119, 1060332839, 1379454719, 1954690919, 3799661039, 4024838999, 4633959959, 5393988599, 5935994063, 8831231639, 9866482079, 11237657759, 11273710139, 12266364599, 14440498379, 14952625379
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k+1) == 4*sigma(k); \\ Michel Marcus, Jan 18 2021

Extensions

a(10)-a(23) from Seiichi Manyama using A058072 data, Jan 17 2021

A340715 Least positive number k such that sigma(k+1) = n * sigma(k).

Original entry on oeis.org

14, 5, 1, 37033919, 14182439039
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Examples

			  n | sigma(a(n)) | sigma(a(n)+1)
----+-------------+--------------
  1 |          24 |            24
  2 |           6 |            12
  3 |           1 |             3
  4 |    39940992 |     159763968
  5 | 14182439040 |   70912195200
		

Crossrefs

Programs

  • Mathematica
    k = 1;n = 1;Print[While[DivisorSigma[1, k + 1] != n*DivisorSigma[1, k], k;k k+]; k] (* Robert P. P. McKone, Jan 17 2021 *)
  • PARI
    {a(n) = my(k=1); while(sigma(k+1)!=n*sigma(k), k++); k}

A077089 Quotients when sigma(k+1)/sigma(k) is an integer.

Original entry on oeis.org

3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 1, 2, 3, 3, 1, 3, 1, 2, 2, 2, 3, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 3, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 31 2002

Keywords

Examples

			a(1) = sigma(2)/sigma(1) = 3/1 = 3.
a(2) = sigma(6)/sigma(5) = 12/6 = 2.
a(3) = sigma(15)/sigma(14) = 24/24 = 1.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[a=DivisorSigma[1, n+1], b=DivisorSigma[1, n]]; If[Equal[s, 0], Print[a/b]], {n, 1, 10000000}]
    Select[#[[2]]/#[[1]]&/@Partition[DivisorSigma[1,Range[10^6]],2,1], IntegerQ] (* Harvey P. Dale, Dec 26 2015 *)

Formula

a(n) = sigma(A058072(n)+1)/sigma(A058072(n)). - Seiichi Manyama, Jan 16 2021

A227240 Numbers k such that sigma(k) divides sigma(2*k) and sigma(2*k + 1).

Original entry on oeis.org

1, 3, 5, 7, 11, 23, 29, 41, 53, 77, 83, 89, 103, 113, 131, 143, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 533, 593, 641, 653, 659, 667, 683, 719, 743, 761, 807, 809, 817, 911, 953, 1013, 1019, 1031, 1049, 1073, 1103, 1223, 1229, 1289, 1409
Offset: 1

Views

Author

Alex Ratushnyak, Jul 03 2013

Keywords

Comments

Numbers such that 2*k and/or 2*k + 1 is also in the sequence: 1, 3, 5, 11, 41, 89, 179, 359, 509, 719, 743, ... (Cf. A007700).

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[DivisorSigma[1, 2#]/DivisorSigma[1, #]] && IntegerQ[DivisorSigma[1, 2# + 1]/DivisorSigma[1, #]] &] (* Alonso del Arte, Jul 15 2013 *)
    Select[Range[1500],And@@Divisible[{DivisorSigma[1,2#],DivisorSigma[1,2#+1]}, DivisorSigma[1,#]]&] (* Harvey P. Dale, Feb 25 2016 *)
  • PARI
    isok(n) = my(sn=sigma(n)); !(sigma(2*n) % sn) && !(sigma(2*n+1) % sn); \\ Michel Marcus, Oct 02 2017
Showing 1-6 of 6 results.