cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A125550 a(n) = C(prime(n+2), prime(n)).

Original entry on oeis.org

10, 35, 462, 1716, 12376, 27132, 100947, 20030010, 7888725, 38608020, 1121099408, 6096454, 10737573, 19499099620, 1119487075980, 2944827765, 6522361560, 461738052776, 170230452, 26088783435
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Cf. A058077.

Programs

  • Mathematica
    Table[Binomial[Prime[x + 2], Prime[x]], {x, 1, 20}]
    Binomial[Last[#],First[#]]&/@Partition[Prime[Range[50]],3,1] (* Harvey P. Dale, Oct 29 2013 *)

A060604 a(n) = binomial(prime(n), n) where prime(n) = n-th prime.

Original entry on oeis.org

2, 3, 10, 35, 462, 1716, 19448, 75582, 817190, 20030010, 84672315, 1852482996, 17620076360, 78378960360, 751616304549, 14844575908435, 277508869722315, 1312251244423350, 24151581961607100, 225368761961739396, 1084741953178481928, 19639369867938409940
Offset: 1

Views

Author

Labos Elemer, Apr 13 2001

Keywords

Crossrefs

Programs

A126993 a(n) = binomial(prime(n+3), prime(n)).

Original entry on oeis.org

21, 165, 1287, 19448, 75582, 1144066, 51895935, 141120525, 6107086800, 7898654920, 15338678264, 5178066751, 266783135710, 109712808959985, 22512762077400, 97862516286480, 12802736917880, 18385569737808
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n+3), NthPrime(n)): n in [1..20]]; // G. C. Greubel, May 29 2019
    
  • Mathematica
    Table[Binomial[Prime[n+3], Prime[n]], {x, 1, 20}]
  • PARI
    vector(20, n, binomial(prime(n+3), prime(n))) \\ G. C. Greubel, May 29 2019
    
  • Sage
    [binomial(nth_prime(n+3), nth_prime(n)) for n in (1..20)] # G. C. Greubel, May 29 2019

A126995 a(n) = binomial(prime(n+2), 3).

Original entry on oeis.org

1, 10, 35, 165, 286, 680, 969, 1771, 3654, 4495, 7770, 10660, 12341, 16215, 23426, 32509, 35990, 47905, 57155, 62196, 79079, 91881, 113564, 147440, 166650, 176851, 198485, 209934, 234136, 333375, 366145, 419220, 437989, 540274, 562475, 632710, 708561, 762355
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n), 3): n in [3..40]]; // Vincenzo Librandi, May 10 2017
    
  • Mathematica
    Table[Binomial[Prime[n + 2], Prime[2]], {n, 1, 40}]
    Table[Binomial[Prime[n], 3], {n, 3, 40}] (* Vincenzo Librandi, May 10 2017 *)
  • PARI
    a(n)=binomial(prime(n+2),3) \\ Charles R Greathouse IV, May 10 2017
    
  • Sage
    [binomial(nth_prime(n+2), 3) for n in (1..40)] # G. C. Greubel, May 29 2019

Formula

a(n) ~ (n log n)^3 / 6. - Charles R Greathouse IV, May 10 2017

Extensions

Missing n=0 term added by N. J. A. Sloane, May 17 2020

A126996 a(n) = binomial(prime(3+n), prime(3)).

Original entry on oeis.org

1, 21, 462, 1287, 6188, 11628, 33649, 118755, 169911, 435897, 749398, 962598, 1533939, 2869685, 5006386, 5949147, 9657648, 13019909, 15020334, 22537515, 29034396, 41507642, 64446024, 79208745, 87541245, 106308566, 116828271, 140364532, 254231775
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n+3), 5): n in [0..30]]; // Vincenzo Librandi, May 21 2019
    
  • Mathematica
    Table[Binomial[Prime[n + 3], Prime[3]], {n, 0, 30}]
    Binomial[Prime[Range[3,40]],5] (* Harvey P. Dale, Mar 20 2021 *)
  • PARI
    vector(30, n, binomial(prime(n+3), 5)) \\ G. C. Greubel, May 29 2019
    
  • Sage
    [binomial(nth_prime(n+3), 5) for n in (1..30)] # G. C. Greubel, May 29 2019

Extensions

Missing n=0 term added by N. J. A. Sloane, May 17 2020

A126997 a(n) = binomial(prime(4+n), prime(4)).

Original entry on oeis.org

1, 330, 1716, 19448, 50388, 245157, 1560780, 2629575, 10295472, 22481940, 32224114, 62891499, 154143080, 341149446, 436270780, 869648208, 1329890705, 1629348612, 2898753715, 4151918628, 6890268572, 12846240784, 17199613200, 19813501785, 26075972546, 29796772356, 38620298376
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n+4), 7): n in [1..30]]; // Vincenzo Librandi, May 21 2019
    
  • Mathematica
    Table[Binomial[Prime[n + 4], Prime[4]], {n, 1, 30}]
  • PARI
    vector(30, n, binomial(prime(n+4), prime(4)) ) \\ G. C. Greubel, May 29 2019
    
  • Sage
    [binomial(nth_prime(n+4), 7) for n in (1..30)] # G. C. Greubel, May 29 2019

Extensions

Terms a(24) onward added by G. C. Greubel, May 30 2019
Missing n=0 term added by N. J. A. Sloane, May 17 2020

A126998 a(n) = binomial(prime(n+5), prime(5)).

Original entry on oeis.org

1, 78, 12376, 75582, 1352078, 34597290, 84672315, 854992152, 3159461968, 5752004349, 17417133617, 76223753060, 279871768995, 418094152866, 1285063345176, 2560547383576, 3558497368608, 9036996468045, 16141841823510, 36519676207704, 99468442390512, 158940114100040
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n+5), NthPrime(5)): n in [1..30]]; // G. C. Greubel, May 29 2019
    
  • Mathematica
    Table[Binomial[Prime[n+5], Prime[5]], {n, 1, 30}]
  • PARI
    vector(30, n, binomial(prime(n+5), prime(5)) ) \\ G. C. Greubel, May 29 2019
    
  • Sage
    [binomial(nth_prime(n+5), nth_prime(5)) for n in (1..30)] # G. C. Greubel, May 29 2019

Extensions

Terms a(19) onward added by G. C. Greubel, May 30 2019
Missing n=0 term added by N. J. A. Sloane, May 17 2020

A126994 a(n) = binomial(prime(n+5), prime(n)).

Original entry on oeis.org

1, 78, 680, 11628, 245157, 34597290, 206253075, 15905368710, 244662670200, 960566918220, 4568648125690, 462525733568080, 8964377427999630, 6236646703759395, 972963730453314600, 5300174441392685400
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(NthPrime(n+5), NthPrime(n)): n in [1..20]]; // G. C. Greubel, May 29 2019
    
  • Mathematica
    Table[Binomial[Prime[n+5], Prime[n]], {n, 0, 20}]
  • PARI
    vector(20, n, binomial(prime(n+5), prime(n))) \\ G. C. Greubel, May 29 2019
    
  • Sage
    [binomial(nth_prime(n+5), nth_prime(n)) for n in (1..20)] # G. C. Greubel, May 29 2019

Extensions

Missing n=0 term added by N. J. A. Sloane, May 17 2020

A080911 a(n) = binomial(n!,(n-1)!).

Original entry on oeis.org

1, 2, 15, 134596, 10872202353646160680764975
Offset: 1

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n!, (n-1)!], {n, 1, 7}] (* Vaclav Kotesovec, Nov 13 2014 *)

A058078 Greatest common divisor of two binomial coefficients formed from consecutive primes: a(n) = gcd(C(prime(n+2), prime(n+1)), C(prime(n+1), prime(n))).

Original entry on oeis.org

1, 1, 3, 6, 2, 1, 1, 35, 15, 3, 2, 1, 3, 5, 14, 6, 6, 7, 1, 1, 5, 4, 4, 15, 3, 1, 2, 2, 55, 5, 4, 3, 1, 1, 3, 84, 1, 1, 28, 10, 3, 3, 1, 1, 1, 221, 3, 6, 2, 7, 3, 15, 231, 21, 7, 1, 5, 70, 3, 1, 1292, 35, 1, 3, 15, 24, 7, 1, 6, 7, 1, 3, 42, 5, 1, 231, 35, 1, 143, 2, 5, 1, 1, 7, 14, 1, 45, 3
Offset: 1

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Examples

			n = 8, a(8) = gcd(C(prime(10), prime(9)), C(prime(9), prime(8))) = gcd(C(29, 23), C(23, 19)) = gcd(8855, 475020) = gcd(5*7*11*23, 2^2*3^2*5*7*13*29) = 5*7 = 35.
		

Crossrefs

Programs

  • Maple
    A058078:=n->gcd(binomial(ithprime(n+2),ithprime(n+1)), binomial(ithprime(n+1), ithprime(n))); seq(A058078(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
  • Mathematica
    GCD[Binomial[Last[#],#[[2]]],Binomial[#[[2]],First[#]]]&/@ Partition[ Prime[ Range[90]],3,1] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    a(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); gcd(binomial(r,q), binomial(q,p)) \\ Charles R Greathouse IV, Nov 18 2015

Formula

a(n) = gcd(f(n+1), f(n)) where f(n) = binomial(prime(n+1), prime(n)). - Joerg Arndt, Apr 05 2014

Extensions

Edited by Wolfdieter Lang, Apr 16 2014
Showing 1-10 of 14 results. Next