A176266 Binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of n.
1, 1, 2, 5, 42, 132, 1144, 3978, 35530, 1, 15, 210, 2470, 22386, 228459, 2908360, 37584261, 284291205, 3701413144, 35, 852, 19019, 349812, 6529292, 132435472, 2000945100, 24366118700, 328386663605, 3520256293710, 2072, 81375, 2271776, 59988852, 1227434238, 33401522154, 584134601050, 11919696387170, 234924043375476, 3924875235562164, 208335
Offset: 1
Examples
a(5) = 42 because prime(5) = 11, s = 5, binomial(11,5)/11 = 462/11=42. a(16)=2908360 because prime(16)=53, s=7, binomial(53,7)/53 =154143080/53 = 2908360.
Crossrefs
Cf. A075872.
Programs
-
Maple
A176266 := proc(n) binomial(ithprime(n),A007953(n))/ithprime(n) ; end proc: seq(A176266(n),n=1..20) ;
-
Mathematica
Table[Binomial[Prime[n],Total[IntegerDigits[n]]]/Prime[n],{n,40}] (* Harvey P. Dale, Oct 25 2020 *)
-
Sage
A176266 = lambda n: binomial(nth_prime(n), sum(n.digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010
Comments