cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058313 Numerator of the n-th alternating harmonic number, Sum_{k=1..n} (-1)^(k+1)/k.

Original entry on oeis.org

1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599, 236266661971
Offset: 1

Views

Author

N. J. A. Sloane, Dec 09 2000

Keywords

Comments

A Wolstenholme-like theorem: for prime p > 3, if p = 6k-1, then p divides a(4k-1), otherwise if p = 6k+1, then p divides a(4k). - T. D. Noe, Apr 01 2004
For the limit n -> infinity of the partial sums of the alternating harmonic series see A002162. - Wolfdieter Lang, Sep 08 2015
a(n)/A058312(n) appears in the locker puzzle (see the links in A364317) as the probability of failures with the strategy used for n lockers and opening of up to floor(n/2) lockers. Note the alternative formula given below for a(n)/A058312(n) using only positive fractions. - Wolfdieter Lang, Aug 12 2023

Examples

			1, 1/2, 5/6, 7/12, 47/60, 37/60, 319/420, 533/840, 1879/2520, ...
For n=4: a(n)/A058312(n) = 7/12 because 1/1 - 1/2 + 1/3 - 1/4 = 7/12 = 1/4 + 1/3. - _Wolfdieter Lang_, Aug 12 2023
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, page 14, #71.

Crossrefs

Denominators are A058312. Cf. A025530.
Apart from leading term, same as A075830.
Cf. A001008 (numerator of n-th harmonic number).
Bisections are A049281 and A082687.
Cf. A181983.

Programs

  • Haskell
    import Data.Ratio((%), numerator)
    a058313 n = a058313_list !! (n-1)
    a058313_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a181983_list
    -- Reinhard Zumkeller, Mar 20 2013
  • Maple
    A058313 := n->numer(add((-1)^(k+1)/k,k=1..n));
    # Alternatively:
    a := n -> numer(harmonic(n) - harmonic((n-modp(n,2))/2)):
    seq(a(n), n=1..29); # Peter Luschny, May 03 2016
  • Mathematica
    Numerator[Table[Sum[(-1)^(k + 1)/k, {k, n}], {n, 30}]] (* Harvey P. Dale, Jul 18 2012 *)
    a[n_]:= (-1)^n (HarmonicNumber[n/2 - 1/2] - HarmonicNumber[n/2] + (-1)^n Log[4])/2; Table[a[n] // FullSimplify, {n, 29}] // Numerator (* Gerry Martens, Jul 05 2015 *)
    Rest[Numerator[CoefficientList[Series[Log[1 + x]/(1 - x), {x, 0, 33}], x]]] (* Vincenzo Librandi, Jul 06 2015 *)
    Table[Log[2] - (-1)^n LerchPhi[-1, 1, n + 1], {n, 20}] // Numerator (* Eric W. Weisstein, Aug 25 2023 *)
  • PARI
    a(n)=(-1)^n*numerator(polcoeff(log(1-x)/(x+1)+O(x^(n+1)), n))
    

Formula

G.f. for a(n)/A058312(n): log(1+x)/(1-x). - Benoit Cloitre, Jun 15 2003
a(n) = (n*a(n-1) + (-1)^(n+1)*A058312(n-1))/gcd(n*a(n-1) + (-1)^(n+1)*A058312(n-1), n*A058312(n-1)). - Robert Israel, Jul 06 2015
From Peter Luschny, May 03 2016: (Start)
Let H(n) denote the harmonic numbers, AH(n) denote the alternating harmonic numbers, Psi the polygamma function and euler(n,x) the Euler polynomials. Then:
AH(n) = H(n) - H((n - n mod 2)/2).
AH(z) = log(2)+(1/2)*cos(Pi*z)*(Psi(z/2+1/2)-Psi(z/2+1)).
AH(z) ~ log(2)+(1/2)*cos(Pi*z)*(-1/z+1/(2*z^2)-1/(4*z^4)+1/(2*z^6)-...).
AH(z) ~ log(2)-(1/2)*cos(Pi*z)*Sum_{n>=0} Euler(n,0)/z^(n+1). (End)
Sum_{k>=1} (-1)^(k+1)*AH(k)/k = Pi^2/12 + log(2)^2/2 (Boyadzhiev, 2013). - Amiram Eldar, Oct 04 2021
a(n)/A058312(n) = Sum_{j=0..ceiling(n/2) - 1} 1/(n-j), for n >= 1. (Proof by comparing the recurrences for even and odd n.) - Wolfdieter Lang, Aug 12 2023
For n >= 1, log(2) = a(n)/A058312(n) + (-1)^n*n!*Sum_{k >= 1} 1/(k*(k + 1)* ...*(k + n)*2^k). - Peter Bala, Dec 07 2023
a(n) = the (reduced) numerator of the continued fraction 1/(1 + 1^2/(1 + 2^2/(1 + 3^2/(1 + ... + (n-1)^2/(1))))). - Peter Bala, Feb 18 2024