A058891 a(n) = 2^(2^(n-1) - 1).
1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968
Offset: 1
Examples
The 8 possible hyperedge sets for the vertex set {1, 2} are {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}} and {{1}, {2}, {1, 2}}. - _Lorenzo Sauras Altuzarra_, Apr 01 2023
References
- F. Harary, Graph Theory, Page 209, Problem 16.11.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..12
- Wikipedia, Hypergraph.
Programs
-
Maple
a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009
-
Mathematica
a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)
-
PARI
a(n) = { 2^(2^(n-1)-1) } \\ Harry J. Smith, Jun 23 2009
-
Python
def A058891(n): return 1<<(1<
Chai Wah Wu, Dec 12 2022
Formula
a(1) = 1, a(n+1) = 2*a(n)^2.
a(1) = 1, a(n+1) = 2^n*a(1)*a(2)*...*a(n). - Benoit Cloitre, Sep 13 2003
a(n) = (-1/2)*((1 + sqrt(-3))^(2^n) + (1 - sqrt(-3))^(2^n)). - Artur Jasinski, Oct 11 2008
a(n) = 2*a(n-1)^2 is an example with a(1) = 1 and k = 2 of a(n) = k*a(n-1)^2; general explicit formula: a(n) = ((a(1)*k)^(2^(n-1)))/k. - Andreas Pfaffel (andreas.pfaffel(AT)gmx.at), Apr 27 2010
a(n) = A077585(n-1) + 1. - Maurizio De Leo, Feb 25 2015
a(n) = 2^A000225(n-1). - Michel Marcus, Aug 19 2020
Sum_{n>=0} 1/a(n) = A076214. - Amiram Eldar, Oct 27 2020
Comments