cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A059052 Number of n-element unlabeled ordered T_0-antichains; T_1-hypergraphs (with empty hyperedge but without multiple hyperedges) on n labeled nodes.

Original entry on oeis.org

2, 4, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 19 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.

Examples

			a(3) = 2 + 13 + 26 + 22 + 8 + 1. a(6) = 2^64 - 30*2^48 + 120*2^40 + 60*2^36 + 60*2^34 - 12*2^33 - 345*2^32 - 720*2^30 + 810*2^28 + 120*2^27 + 480*2^26 + 360*2^25 - 480*2^24 - 720*2^23 - 240*2^22 - 540*2^21 + 1380*2^20 + 750*2^19 + 60*2^18 - 210*2^17 - 1535*2^16 - 1820*2^15 + 2250*2^14 + 1800*2^13 - 2820*2^12 + 300*2^11 + 2040*2^10 + 340*2^9 - 1815*2^8 + 510*2^7 - 1350*2^6 + 1350*2^5 + 274*2^4 - 548*2^3 + 120*2^2.
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n) = Sum_{m=0..2^n} A(n, m), where A(n, m) is number of n-element ordered T_0-antichains on an unlabeled m-set. Cf. A059048.
a(n) = row sums of A059048.

A059083 Number of T_0-antichains on a labeled n-set.

Original entry on oeis.org

2, 3, 3, 8, 96, 6373, 7725703, 2414518872815, 56130437161078967568912
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

Examples

			a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 2 + 1, a(3) = 6 + 2, a(4) = 12 + 52 + 25 + 6 + 1, a(5) = 520 + 1770 + 2086 + 1370 + 490 + 115 + 20 + 2.
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n) = Sum_{m=0..binomial(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element T_0-antichains on a labeled n-set. Cf. A059080.
a(n) = column sums of A059080.

Extensions

More terms from Vladeta Jovovic, Nov 28 2003

A059049 Number of 6-element ordered T_0-antichains on an unlabeled n-set; T_1-hypergraphs on 6 labeled nodes with n (not necessarily empty) distinct hyperedges (n=0,1,...,64).

Original entry on oeis.org

0, 0, 0, 0, 30, 8220, 738842, 25256626, 464670831, 5570534392, 48655319306, 332222541564, 1859009659336, 8811850222304, 36244568422086, 131710639199900, 428697293437675, 1263065928235140, 3396450715952370
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 19 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n)=C(64, n) - 30*C(48, n) + 120*C(40, n) + 60*C(36, n) + 60*C(34, n) - 12*C(33, n) - 345*C(32, n) - 720*C(30, n) + 810*C(28, n) + 120*C(27, n) + 480*C(26, n) + 360*C(25, n) - 480*C(24, n) - 720*C(23, n) - 240*C(22, n) - 540*C(21, n) + 1380*C(20, n) + 750*C(19, n) + 60*C(18, n) - 210*C(17, n) - 1535*C(16, n) - 1820*C(15, n) + 2250*C(14, n) + 1800*C(13, n) - 2820*C(12, n) + 300*C(11, n) + 2040*C(10, n) + 340*C(9, n) - 1815*C(8, n) + 510*C(7, n) - 1350*C(6, n) + 1350*C(5, n) + 274*C(4, n) - 548*C(3, n) + 120*C(2, n).

A059050 Number of 7-element ordered T_0-antichains on an unlabeled n-set; T_1-hypergraphs on 7 labeled nodes with n (not necessarily empty) distinct hyperedges (n=0,1,...,128).

Original entry on oeis.org

0, 0, 0, 0, 0, 20580, 9106440, 1058272828, 56671435220, 1819138009252, 40526220292026, 685404291322800, 9333711208757096, 106588763704012184, 1051025434717631806, 9144977489478933912, 71381946761468630363
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 19 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n)=C(128, n) - 42*C(96, n) + 210*C(80, n) + 140*C(72, n) + 210*C(68, n) - 84*C(66, n) + 14 *C(65, n) - 819*C(64, n) - 2520*C(60, n) + 2730*C(56, n) + 840*C(54, n) + 840*C(52, n) - 420*C(51, n) + 2940*C(50, n) + 630*C(48, n) - 5040*C(46, n) + 840*C(45, n) - 1260*C(44, n) + 1680*C(43, n) - 9660*C(42, n) + 1260*C(41, n) + 3360*C(40, n) - 7560*C(39, n) + 11130*C(38, n) + 5880*C(37, n) + 9240*C(36, n) + 2982*C(35, n) - 6300*C(34, n) - 8652 *C(33, n) - 9905*C(32, n) - 8400*C(31, n) - 8540*C(30, n) + 13860*C(29, n) + 14490 *C( 28, n) - 5040*C(27, n) + 10500*C(26, n) + 10080*C(25, n) - 8120*C(24, n) - 15050*C(23, n) - 5040*C(22, n) - 11340*C(21, n) + 20580*C(20, n) + 15750*C(19, n) - 1540*C(18, n) - 5810*C(17, n) - 16485*C(16, n) - 21420*C(15, n) + 26250*C(14, n) + 21000*C(13, n) - 29820*C(12, n) + 3500*C(11, n) + 17640*C(10, n) + 2940*C(9, n) - 16016*C(8, n) + 4410*C(7, n) - 9744*C(6, n) + 9744*C(5, n) + 1764*C(4, n) - 3528*C(3, n) + 720*C(2, n).

A059079 Number of n-element T_0-antichains on a labeled set.

Original entry on oeis.org

2, 5, 19, 16654, 2369110564675, 5960531437586238714806902334250676, 479047836152505670895481840783987408043359908583921478726185296900312296071642855730299
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 23 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

Examples

			a(0) = (1/0!)*[1!*e] = 2; a(1) = (1/1!)*[2!*e] = 5; a(2) = (1/2!)*([4!*e] - 2*[3!*e] + [2!*e]) = 19; a(3) = (1/3!)*([8!*e] - 6*[6!*e] + 6*[5!*e] + 3*[4!*e] - 6*[3!*e] + 2*[2!*e]) = 16654, where [n!*e]=floor(n!*exp(1)).
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A059080 Triangle A(n,m) of numbers of n-element T_0-antichains on a labeled m-set, m=0,...,2^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 0, 1, 6, 12, 0, 0, 0, 2, 52, 520, 2640, 6720, 6720, 0, 0, 0, 0, 25, 1770, 53940, 1012620, 13487040, 136745280, 1094688000, 7025356800, 36084787200, 145297152000, 435891456000, 871782912000, 871782912000
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 29 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. Row sums give A059079. Column sums give A059083.

Examples

			[1, 1], [1, 2, 2], [0, 0, 1, 6, 12], [0, 0, 0, 2, 52, 520, 2640, 6720, 6720], ...; there are 2 3-element T_0-antichains on a 3-set: {{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A059051 Number of ordered T_0-antichains on an unlabeled n-set; labeled T_1-hypergraphs with n (not necessarily empty) distinct hyperedges.

Original entry on oeis.org

2, 3, 2, 4, 99, 190866
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 19 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.

Examples

			a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 1 + 1, a(3) = 2 + 2, a(4) = 1 + 13 + 25 + 30 + 30, a(5) = 26 + 354 + 2086 + 8220 + 20580 + 38640 + 60480 + 60480.
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n) = Sum_{m=0..C(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element ordered T_0-antichains on an unlabeled n-set. Cf. A059048.
a(n) = column sums of A059048.

A059081 Number of 5-element T_0-antichains on a labeled n-set, n=0,..,32.

Original entry on oeis.org

0, 0, 0, 0, 6, 2086, 273072, 19371912, 940055760, 35289051840, 1099827892800, 29723466326400, 716351882400000, 15683016533184000, 315722887044364800, 5890186860509952000, 102288867798813696000, 1656523525703574528000
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Mathematica
    P[x_, n_] := (-1)^n*Pochhammer[-x, n]; Table[(1/5!)*(P[32, n] - 20*P[24, n] + 60*P[20, n] + 20*P[18, n] + 10*P[17, n] - 110*P[16, n] - 120*P[15, n] + 150*P[14, n] + 120*P[13, n] - 240*P[12, n] + 20*P[11, n] + 240*P[10, n] + 40*P[9, n] - 205*P[8, n] + 60*P[7, n] - 210*P[6, n] + 210*P[5, n] + 50*P[4, n] - 100*P[3, n] + 24*P[2, n]), {n, 0, 32}] (* G. C. Greubel, Oct 07 2017 *)

Formula

a(n) = (1/5!)*([32]_n - 20*[24]_n + 60*[20]_n + 20*[18]_n + 10*[17]_n - 110*[16]_n - 120*[15]_n + 150*[14]_n + 120*[13]_n - 240*[12]_n + 20*[11]_n + 240*[10]_n + 40*[9]_n - 205*[8]_n + 60*[7]_n - 210*[6]_n + 210*[5]_n + 50*[4]_n - 100*[3]_n + 24*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.

A059082 Number of 6-element T_0-antichains on a labeled n-set, n = 0, ..., 64.

Original entry on oeis.org

0, 0, 0, 0, 1, 1370, 738842, 176796382, 26021566536, 2807549333568, 245222809302240, 18418417704308160, 1236761946163054080, 76210520306627266560, 4388527139331858082560, 239214759548062858560000, 12457699161320493400320000, 623967599346727576292352000
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Maple
    f:=proc(k,n) if k+1<=n then RETURN(0) else RETURN(k!/(k - n)!) fi: end;a:=n->(1/6!)*(f(64,n) - 30*f(48,n) + 120*f(40,n) + 60*f(36,n) + 60*f(34,n)- 12*f(33,n) - 345*f(32,n) - 720*f(30,n) + 810*f(28,n) + 120*f(27,n) + 480*f(26,n) + 360*f(25,n) - 480*f(24,n) - 720*f(23,n) - 240*f(22,n) - 540*f(21,n) + 1380*f(20,n) + 750*f(19,n) + 60*f(18,n) - 210*f(17,n) - 1535*f(16,n) - 1820*f(15,n) + 2250*f(14,n) + 1800*f(13,n) - 2820*f(12,n) + 300*f(11,n) + 2040*f(10,n) + 340*f(9,n) - 1815*f(8,n) + 510*f(7,n) - 1350*f(6,n) + 1350*f(5,n) + 274*f(4,n) - 548*f(3,n) + 120*f(2,n));seq(a(n),n=0..20); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005

Formula

a(n) = (1/6!)*([64]_n - 30*[48]_n + 120*[40]_n + 60*[36]_n + 60*[34]_n - 12*[33]_n - 345*[32]_n - 720*[30]_n + 810*[28]_n + 120*[27]_n + 480*[26]_n + 360*[25]_n - 480*[24]_n - 720*[23]_n - 240*[22]_n - 540*[21]_n + 1380*[20]_n + 750*[19]_n + 60*[18]_n - 210*[17]_n - 1535*[16]_n - 1820*[15]_n + 2250*[14]_n + 1800*[13]_n - 2820*[12]_n + 300*[11]_n + 2040*[10]_n + 340*[9]_n - 1815*[8]_n + 510*[7]_n - 1350*[6]_n + 1350*[5]_n + 274*[4]_n - 548*[3]_n + 120*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Showing 1-9 of 9 results.