A326965
Number of set-systems on n vertices where every covered vertex is the unique common element of some subset of the edges.
Original entry on oeis.org
1, 2, 5, 46, 19181, 2010327182, 9219217424630040409, 170141181796805106025395618012972506978, 57896044618658097536026644159052312978532934306727333157337631572314050272137
Offset: 0
The a(0) = 1 through a(2) = 5 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{2},{1,2}}
The version with empty edges allowed is
A326967.
Set-systems whose dual is a weak antichain are
A326968.
The BII_numbers of these set-systems are
A326979.
-
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],tmQ]],{n,0,3}]
A326946
Number of unlabeled T_0 set-systems on n vertices.
Original entry on oeis.org
1, 2, 5, 34, 1919, 18660178
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
{} {} {}
{{1}} {{1}}
{{1},{2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The version with empty edges allowed is
A326949.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]
A326961
Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.
Original entry on oeis.org
1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0
The a(3) = 36 set-systems:
{{1}{2}{3}} {{12}{13}{23}{123}} {{2}{3}{12}{13}{23}}
{{12}{13}{23}} {{1}{2}{3}{12}{13}} {{2}{3}{12}{13}{123}}
{{1}{2}{3}{12}} {{1}{2}{3}{12}{23}} {{2}{12}{13}{23}{123}}
{{1}{2}{3}{13}} {{1}{2}{3}{13}{23}} {{3}{12}{13}{23}{123}}
{{1}{2}{3}{23}} {{1}{2}{12}{13}{23}} {{1}{2}{3}{12}{13}{23}}
{{1}{2}{13}{23}} {{1}{2}{3}{12}{123}} {{1}{2}{3}{12}{13}{123}}
{{1}{2}{3}{123}} {{1}{2}{3}{13}{123}} {{1}{2}{3}{12}{23}{123}}
{{1}{3}{12}{23}} {{1}{2}{3}{23}{123}} {{1}{2}{3}{13}{23}{123}}
{{2}{3}{12}{13}} {{1}{3}{12}{13}{23}} {{1}{2}{12}{13}{23}{123}}
{{1}{12}{13}{23}} {{1}{2}{13}{23}{123}} {{1}{3}{12}{13}{23}{123}}
{{2}{12}{13}{23}} {{1}{3}{12}{23}{123}} {{2}{3}{12}{13}{23}{123}}
{{3}{12}{13}{23}} {{1}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}{123}}
Covering T_0 set-systems are
A059201.
The version with empty edges allowed is
A326960.
The non-covering version is
A326965.
Covering set-systems whose dual is a weak antichain are
A326970.
The BII-numbers of T_1 set-systems are
A326979.
-
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]
A059523
Number of n-element unlabeled ordered T_0-antichains without isolated vertices; number of T_1-hypergraphs (without empty edge and without multiple edges) on n labeled vertices.
Original entry on oeis.org
1, 2, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0
Number of k-element T_1-hipergraphs (without empty edge and without multiple edges) on 3 labeled vertices is
C(7,k)-6*C(5,k)+6*C(4,k)+3*C(3,k)-6*C(2,k)+2*C(1,k),k=0..7; so a(3)=2+11+15+7+1=36=2^7-6*2^5+6*2^4+3*2^3-6*2^2+2*2.
A326970
Number of set-systems covering n vertices whose dual is a weak antichain.
Original entry on oeis.org
1, 1, 3, 43, 19251
Offset: 0
The a(3) = 43 set-systems:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {12}{13}{23} {1}{2}{3}{13}
{3}{12} {1}{23}{123} {1}{2}{3}{23}
{2}{13}{123} {1}{2}{13}{23}
{3}{12}{123} {1}{2}{3}{123}
{1}{3}{12}{23}
{2}{3}{12}{13}
{1}{12}{13}{23}
{2}{12}{13}{23}
{3}{12}{13}{23}
{12}{13}{23}{123}
.
{1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123}
{1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123}
{1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123}
{1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123}
{1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123}
{1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123}
{1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{3}{12}{13}{23}
{2}{3}{12}{13}{23}
{1}{2}{13}{23}{123}
{1}{3}{12}{23}{123}
{2}{3}{12}{13}{123}
{1}{12}{13}{23}{123}
{2}{12}{13}{23}{123}
{3}{12}{13}{23}{123}
Covering set-systems whose dual is strict are
A059201.
The BII-numbers of these set-systems are
A326966.
Cf.
A006126,
A059052,
A059523,
A326950,
A326960,
A326965,
A326969,
A326971,
A326974,
A326975,
A326978.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A326943
Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.
Original entry on oeis.org
2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0
The a(0) = 2 through a(3) = 6 sets of subsets:
{} {{1}} {{1},{1,2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A309615.
The non-covering version is
A326945.
The version not closed under intersection is
A326939.
Cf.
A003180,
A003181,
A003465,
A059052,
A059201,
A245567,
A316978,
A319564,
A319637,
A326940,
A326941,
A326942,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A059048
Triangle A(n,m) of numbers of n-element ordered T_0-antichains on an unlabeled m-set or numbers of T_1-hypergraphs on n labeled nodes with m (not necessarily empty) distinct hyperedges (m=0,1,...,2^n).
Original entry on oeis.org
1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 13, 26, 22, 8, 1, 0, 0, 0, 0, 25, 354, 1798, 4822, 8028, 9044, 7240, 4224, 1808, 560, 120, 16, 1, 0, 0, 0, 0, 30, 2086, 45512, 461236, 2797785, 11669660, 36369970, 89356260, 179461250, 302225100, 43458923, 0
Offset: 0
[1, 1], [1, 2, 1], [0, 0, 1, 2, 1], [0, 0, 0, 2, 13, 26, 22, 8, 1], .... There are 72 3-element unlabeled ordered T_0-antichains: 2 on 3-set, 13 on 4-set, 26 on 5-set, 22 on 6-set, 8 on 7-set and 1 on 8-set.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
A326951
Number of unlabeled sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.
Original entry on oeis.org
2, 4, 8, 40, 2464
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{},{1}}
{{1},{2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Unlabeled sets of subsets are
A003180.
Unlabeled T_0 sets of subsets are
A326949.
The case without empty edges is
A326972.
The covering case is
A327011 (first differences).
A326960
Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.
Original entry on oeis.org
2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0
The a(0) = 2 through a(2) = 4 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Covering sets of subsets are
A000371.
Covering T_0 sets of subsets are
A326939.
The case without empty edges is
A326961.
The non-covering version is
A326967.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]
A326969
Number of sets of subsets of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
2, 4, 12, 112, 38892
Offset: 0
The a(0) = 2 through a(2) = 12 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{1,2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1,2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Sets of subsets whose dual is strict are
A326941.
The BII-numbers of set-systems whose dual is a weak antichain are
A326966.
Sets of subsets whose dual is a (strict) antichain are
A326967.
The case without empty edges is
A326968.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
Showing 1-10 of 22 results.
Comments