cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A326965 Number of set-systems on n vertices where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

1, 2, 5, 46, 19181, 2010327182, 9219217424630040409, 170141181796805106025395618012972506978, 57896044618658097536026644159052312978532934306727333157337631572314050272137
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set-system where no edge is a subset of any other. This sequence counts set-systems whose dual is a (strict) antichain, also called T_1 set-systems.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{2},{1,2}}
		

Crossrefs

Set-systems are A058891.
T_0 set-systems are A326940.
The covering case is A326961.
The version with empty edges allowed is A326967.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A326972.
The BII_numbers of these set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],tmQ]],{n,0,3}]

Formula

Binomial transform of A326961.
a(n) = A326967(n)/2.

A326946 Number of unlabeled T_0 set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 34, 1919, 18660178
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{1},{2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A000612.
The antichain case is A245567.
The covering case is A319637.
The labeled version is A326940.
The version with empty edges allowed is A326949.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]

Formula

Partial sums of A319637.
a(n) = A326949(n)/2.

Extensions

a(5) from Max Alekseyev, Oct 11 2023

A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.

Original entry on oeis.org

1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2019

Keywords

Comments

Same as A059523 except with a(1) = 1 instead of 2.
Alternatively, these are set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of sets, none of which is a subset of any other.

Examples

			The a(3) = 36 set-systems:
  {{1}{2}{3}}        {{12}{13}{23}{123}}     {{2}{3}{12}{13}{23}}
  {{12}{13}{23}}     {{1}{2}{3}{12}{13}}     {{2}{3}{12}{13}{123}}
  {{1}{2}{3}{12}}    {{1}{2}{3}{12}{23}}     {{2}{12}{13}{23}{123}}
  {{1}{2}{3}{13}}    {{1}{2}{3}{13}{23}}     {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{23}}    {{1}{2}{12}{13}{23}}    {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}}   {{1}{2}{3}{12}{123}}    {{1}{2}{3}{12}{13}{123}}
  {{1}{2}{3}{123}}   {{1}{2}{3}{13}{123}}    {{1}{2}{3}{12}{23}{123}}
  {{1}{3}{12}{23}}   {{1}{2}{3}{23}{123}}    {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}}   {{1}{3}{12}{13}{23}}    {{1}{2}{12}{13}{23}{123}}
  {{1}{12}{13}{23}}  {{1}{2}{13}{23}{123}}   {{1}{3}{12}{13}{23}{123}}
  {{2}{12}{13}{23}}  {{1}{3}{12}{23}{123}}   {{2}{3}{12}{13}{23}{123}}
  {{3}{12}{13}{23}}  {{1}{12}{13}{23}{123}}  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering set-systems are A003465.
Covering T_0 set-systems are A059201.
The version with empty edges allowed is A326960.
The non-covering version is A326965.
Covering set-systems whose dual is a weak antichain are A326970.
The unlabeled version is A326974.
The BII-numbers of T_1 set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]

Formula

Inverse binomial transform of A326965.

A059523 Number of n-element unlabeled ordered T_0-antichains without isolated vertices; number of T_1-hypergraphs (without empty edge and without multiple edges) on n labeled vertices.

Original entry on oeis.org

1, 2, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0

Views

Author

Vladeta Jovovic and Goran Kilibarda, Jan 20 2001; revised Jun 03 2004

Keywords

Examples

			Number of k-element T_1-hipergraphs (without empty edge and without multiple edges) on 3 labeled vertices is
C(7,k)-6*C(5,k)+6*C(4,k)+3*C(3,k)-6*C(2,k)+2*C(1,k),k=0..7; so a(3)=2+11+15+7+1=36=2^7-6*2^5+6*2^4+3*2^3-6*2^2+2*2.
		

Crossrefs

Formula

a(n) = A059052(n)/2.

A326970 Number of set-systems covering n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 1, 3, 43, 19251
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edges consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(3) = 43 set-systems:
  {123}  {1}{23}  {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}  {12}{13}{23}  {1}{2}{3}{13}
         {3}{12}  {1}{23}{123}  {1}{2}{3}{23}
                  {2}{13}{123}  {1}{2}{13}{23}
                  {3}{12}{123}  {1}{2}{3}{123}
                                {1}{3}{12}{23}
                                {2}{3}{12}{13}
                                {1}{12}{13}{23}
                                {2}{12}{13}{23}
                                {3}{12}{13}{23}
                                {12}{13}{23}{123}
.
  {1}{2}{3}{12}{13}     {1}{2}{3}{12}{13}{23}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{3}{12}{23}     {1}{2}{3}{12}{13}{123}
  {1}{2}{3}{13}{23}     {1}{2}{3}{12}{23}{123}
  {1}{2}{12}{13}{23}    {1}{2}{3}{13}{23}{123}
  {1}{2}{3}{12}{123}    {1}{2}{12}{13}{23}{123}
  {1}{2}{3}{13}{123}    {1}{3}{12}{13}{23}{123}
  {1}{2}{3}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{3}{12}{13}{23}
  {2}{3}{12}{13}{23}
  {1}{2}{13}{23}{123}
  {1}{3}{12}{23}{123}
  {2}{3}{12}{13}{123}
  {1}{12}{13}{23}{123}
  {2}{12}{13}{23}{123}
  {3}{12}{13}{23}{123}
		

Crossrefs

Covering set-systems are A003465.
Covering set-systems whose dual is strict are A059201.
The T_1 case is A326961.
The BII-numbers of these set-systems are A326966.
The non-covering case is A326968.
The unlabeled version is A326973.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Inverse binomial transform of A326968.

A326943 Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.

Original entry on oeis.org

2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 2 through a(3) = 6 sets of subsets:
  {}    {{1}}     {{1},{1,2}}
  {{}}  {{},{1}}  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A326906.
The case without empty edges is A309615.
The non-covering version is A326945.
The version not closed under intersection is A326939.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326945.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A326906(k). - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 14 2019

A059048 Triangle A(n,m) of numbers of n-element ordered T_0-antichains on an unlabeled m-set or numbers of T_1-hypergraphs on n labeled nodes with m (not necessarily empty) distinct hyperedges (m=0,1,...,2^n).

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 13, 26, 22, 8, 1, 0, 0, 0, 0, 25, 354, 1798, 4822, 8028, 9044, 7240, 4224, 1808, 560, 120, 16, 1, 0, 0, 0, 0, 30, 2086, 45512, 461236, 2797785, 11669660, 36369970, 89356260, 179461250, 302225100, 43458923, 0
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 19 2000

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.

Examples

			[1, 1], [1, 2, 1], [0, 0, 1, 2, 1], [0, 0, 0, 2, 13, 26, 22, 8, 1], .... There are 72 3-element unlabeled ordered T_0-antichains: 2 on 3-set, 13 on 4-set, 26 on 5-set, 22 on 6-set, 8 on 7-set and 1 on 8-set.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A326951 Number of unlabeled sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

2, 4, 8, 40, 2464
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Alternatively, these are unlabeled sets of subsets of {1..n} whose dual is a (strict) antichain, also called T_1 sets of subsets. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of subsets where no edge is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{},{1}}
                  {{1},{2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Unlabeled sets of subsets are A003180.
Unlabeled T_0 sets of subsets are A326949.
The labeled version is A326967.
The case without empty edges is A326972.
The covering case is A327011 (first differences).

Formula

a(n) = 2 * A326972(n).
a(n) = Sum_{k = 0..n} A327011(k).

A326960 Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.

Original entry on oeis.org

2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Same as A059052 except with a(1) = 2 instead of 4.
The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of subsets where no edge is a subset of any other.
Alternatively, these are sets of subsets of {1..n} covering all n vertices where every vertex is the unique common element of some subset of the edges.

Examples

			The a(0) = 2 through a(2) = 4 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Covering sets of subsets are A000371.
Covering T_0 sets of subsets are A326939.
The case without empty edges is A326961.
The non-covering version is A326967.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]

Formula

Binomial transform of A326967.

A326969 Number of sets of subsets of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

2, 4, 12, 112, 38892
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 2 through a(2) = 12 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{1},{2}}
                  {{},{1,2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Sets of subsets whose dual is strict are A326941.
The BII-numbers of set-systems whose dual is a weak antichain are A326966.
Sets of subsets whose dual is a (strict) antichain are A326967.
The case without empty edges is A326968.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

a(n) = 2 * A326968(n).
a(n) = 2 * Sum_{k = 0..n} binomial(n, k) * A326970(k).
Showing 1-10 of 22 results. Next