A059297 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.
1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 3, 6, 1; 0, 4, 24, 12, 1; 0, 5, 80, 90, 20, 1; 0, 6, 240, 540, 240, 30, 1; 0, 7, 672, 2835, 2240, 525, 42, 1; Row 4. Expansion of x^4 in terms of Abel polynomials: x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3. O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Bruce E. Sagan, A note on Abel polynomials and rooted labeled forests. Discrete Mathematics 44(3): 293-298 (1983).
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96, [_Tom Copeland_, Dec 20 2018].
- Eric Weisstein's World of Mathematics, Abel Polynomial
- Eric Weisstein's World of Mathematics, Idempotent Number
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
Maple
T:= (n, k)-> binomial(n, k) *k^(n-k): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 05 2012
-
Mathematica
nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid (* Geoffrey Critzer, Feb 09 2013 *) t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
Sage
# uses[bell_transform from A264428] def A059297_row(n): nat = [k for k in (1..n)] return bell_transform(n, nat) [A059297_row(n) for n in range(8)] # Peter Luschny, Dec 20 2015
Formula
E.g.f.: exp(x*y*exp(y)). - Vladeta Jovovic, Nov 18 2003
Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - Peter Bala, Oct 09 2011
The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - Peter Bala, Dec 08 2011
Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - Peter Bala, Jan 13 2015
The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - Peter Luschny, Dec 20 2015
Comments